Course Syllabus, Spring 2013 **BE 4380 AQUACULTURAL ENGINEERING**

Dr. Hall, Spring 2013, T, Th 12:00-1:30, 116 Tureaud

Credit Hours: 3 (3 hours lecture, with design/project component)

<u>Course Description</u>: *Prerequisites: Senior Standing or Permission of Instructor*. Engineering principles applied to aquacultural systems; water chemistry; fluid mechanics; aquacultural pumping plants; fish pond design; recirculating aquacultural systems; water filtration; disinfection; aeration and degassing; instrumentation in aquacultural systems; biological, ecological and environmental aspects of aquacultural engineering design.

Objectives: Teach students the unique aspects of engineering in aquacultural systems. Learn basics of design of aquacultural systems under a variety of theoretical and applied conditions. Recognize and include biological, economic and environmental aspects in design of aquacultural systems.

<u>Instructor</u>: Dr. Steven G. Hall, 143 E.B. Doran, 578-1049, cell 281-9454 e-mail: <u>sghall@agcenter.lsu.edu</u> TAs: Jake Farlow jfarlow1@lsu.edu; Stefanie Gilliam <u>sgilli1@lsu.edu</u>; Matt Byrum <u>mbyrum1@lsu.edu</u>; Daniel Smith <u>dsmi112@lsu.edu</u>; Office hours: 1:30-2:00, T, Th or by appointment.

<u>Required Text</u>: Timmons and Ebeling, 2010. <u>Recirculating Aquaculture</u> Second Edition, Cayuga Aqua Ventures 2010. 948pp. <u>**References**</u>: See separate listing.

Criteria for determining grade:

Homework:	15%
Final project:	35%

Course Outline, BE 4380 AQUACULTURAL ENGINEERING

Biological Engineering Design of Aquacultural Systems

The Design Process in a Biological Framework Aquatic Ecology and Environments (Water Quality) Species Considerations Site Selection

Water Supply

Ground Water Surface Water Water Quality and Preparation Dissolved Oxygen (DO) Solids (TSS,etc.) Nitrogen Considerations (NH₃, NO₂, NO_x, Feed) Relevance of pH, Temperature and Other factors

Aquaculture in Open Systems

Mariculture Environmental Issues Behavioral, Biological and Ecological Considerations

Fluid Mechanics

Open Channel Flow Continuity Manning's Equation Flow Measurement Flumes and Weirs In-Situ Instrumentation

Pipe flow:

Date	Торіс	Work Due
1/15/2013	Introduction, Syllabus, Grading, Schedule	(First Assignment)
1/17	Biological Engineering in Aqua-systems (See Aqua Lab)	(Ch1,2 Timmons)
1/22	Culture and Biology of Aquatic Organism (Aquaculture in Louisiana, IP, Publications)	
1/24	Water Quality Parameters	(Ch 2, Timmons)
1/29	Recirc I: Mass Balances	(Ch 3, Timmons) HW 2 due
1/31	Aquaculture In Open Systems (Ben Hur)	{Choose Project Topics}

BE 4380 Aquacultural Engineering Course Schedule Spring 2013

Date	Торіс	Work Due	
3/21	Harvesting and Transport	(HW 6 due)	
3/26	Equipment: Gas Transfer; Cleaning	(Ch 10, 11 Timmons)	
3/28	Biological and Trophic Considerations D	iscussion Day	(HW 7 due)
4/2	Spring Break	()
4/4	Spring Break		
4/9	Instrumentation and Control (Smith)		

BE 4380 Aquacultural Engineering Course Schedule (Continued)

BE 4380 Course Project

An aquacultural engineering design project will be incorporated into the course. This will have theoretical and practical design components, with students calculating and designing a relevant aquacultural system or component, and then building and testing that device if possible.

Final Report: 25%

A final report should summarize the engineering design calculations, relevant literature review (who has done similar work before), actual system or component designed and built, and operational testing.

Final Presentation: 10%

A final presentation will be made during the last weeks of the course by each group (groups should consist of 1-3 students), which should present this information in a clear fashion in approximately 20 minute presentation. You may use powerpoint, multimedia, props as available.

Grading of Project Components

The final report should summarize the project fully but succintly, and will be worth 25% of the course grade. Grading will depend heavily on work done, applicability, design relevance and report excellence. The final presentation will be worth 10% of the final course grade, and should include all the above, plus be appropriate for the audience. Web-based or html format presentation are encouraged. All work should be submitted, in electronic format (by file attachment or on disk) if possible.

Project Ideas

Field Testing: Aquacultural Research Station, LSU Lakes How to Video Production Boat Construction, Operation (Smith) Artificial Reef Construction (Byrum) Aquaponics (Gilliam) Use of rice hulls and/or wood chips as biofiltration media (Saidu) Alligators: Energy Efficiency (Hall, Frederick, Husser) Alligators: Housing Improvements (Reigh at ARS, Hall, Frederick, Husser) Autonomous vehicles: help develop such products to reduce bird depredation, measure water quality or do other functions: fleet building; logic; etc. (Smith) Waste Management: Develop a composting system for aquacultural wastes (Hall) Fish emulsion development for application (Hall, Carney, Motsenbacher) Aquaponics: Build a simple hydroponic system which incorporates animal and plant species with an aquatic environment Plants: Aquatic plants for bioenergy (Malveaux) Crawfish: Design/build improved culture units for crawfish (Farlow, Smith) Crawfish: Toxicology experiments (Farlow) Algae Oyster Complex (Hall et al.) Algae for bioenergy (Theegala, Kato or Malveaux) Appropriate Technology: Catfish System for Nigeria (Akinwole, Hall)

Projects should focus on a particular component or system. However, these systems should be integrated into existing systems and/or with other systems under present or future development. For example, waste management and hydroponics could be

Additional References, BE 4380 Aquacultural Engineering

(Should be at Library)

Lekang, Odd-Ivar, 2008. Aquaculture Engineering, Blackwell Publishing, 340 pp.

<u>Reference Text</u>: Lawson, Thomas, 1995. <u>Fundamentals of Aquacultural Engineering</u>. Chapman and Hall.

Hutchinson, Lawrence, 2005. Ecological Aquaculture. Permanent Publications, 149 pp.

Huguenin, J.E. and Colt, J., (1989), <u>Design and operating guide for aquaculture seawater</u> systems, Elsevier Scientific Publishing Co., Amsterdam, 264 pp.

Timmons, M.B., Losordo, T.M., editors, (1994), Aquaculture water reuse systems: engineering design and management, Elsevier Scientific Publishing Co., Amsterdam, 333 pp.

Wheaton, F.W., (1977), Aquacultural Engineering, Wiley, New York, 708 pp.

(Websites)

Handouts from Dr. Hall