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which the idea of combining models with data serves as a cornerstone for understand-
ing insect epizootics.

In their original work, Anderson and May (1980) showed that insect population mod-
els that invoked host–pathogen interactions qualitatively displayed the same dynamics 
as observational data collected in the field. Following this, more rigorous methods of 
analyzing observational time series and field data began to take hold. These methods 
often advocated a likelihood‐based approach that simply asked how likely were the data 
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methods outlined can be applied to many other biological systems. However, since all 
good mechanistic models need to be motivated by the biology of the system, baculovi-
ruses represent a good place to start, given their importance in driving epizootic 
dynamics (Cory and Myers, 2003) and the use of mechanistic models in describing 
these dynamics (e.g., Dwyer et  al., 1997; Elderd et  al., 2013). To reiterate, while the 
biology and the associated models throughout draw on baculoviruses as examples, 
the methodologies discussed have quite a broad use in enhancing our understanding of 
epizootic dynamics as a whole.

Baculovirus infections begin when a susceptible individual consumes occlusion bod-
ies (OBs), often containing multiple copies of the virus. If enough OBs are consumed, 
the individual becomes fatally infected. Sublethal or covert infections also occur (Roy 
et al., 2009), but at relatively low levels (Myers et al., 2000). Covert infections may con-
tribute to the persistence of pathogens at low host densities (Roy et al., 2009) and func-
tion in a manner similar to vertical transmission between mothers and their offspring, 
which also allows pathogens to persist at relatively low host densities (Anderson and 
May, 1981). However, covert infections likely do not drive the boom‐and‐bust cycles 
associated with epizootic dynamics. If a lethal rather than a sublethal infection occurs, 
the infection process moves through a number of stages before the death of the host, 
which can release millions of OBs into the environment; transmission resulting from a 
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degrading due to UV light exposure. The infected individuals then die and, after death, 
release OBs on to the leaf tissue. Once the first instars have died, healthy third or fourth 
instars are placed into the mesh bag. These individuals are then allowed to feed for a 
period of time. Afterwards, the larvae are collected and reared in individual cups until 
death or pupation (Dwyer et  al., 1997; Elderd et  al., 2008; Elderd and Reilly, 2014). 
Infection can be easily diagnosed visually given the drastic manner in which the infec-
tion process slowly consumes the larva. Additionally, since the OBs are quite large and 
can be seen under a light microscope (Elderd, 2013), any potential infections can be 
readily confirmed. In the simplest approach, one can manipulate the amount of patho-
gen in the system (the independent variable) and record the fraction of insects surviving 
(the dependent variable). Thus, experiments that manipulate multiple factors such as 
temperature and the amount of pathogen in the system (Elderd and Reilly, 2014) can be 
readily performed. The data produced can then be combined with any suite of models 
to test the associated hypothesis.

12.3  Modeling Disease Transmission: A Single Epizootic

The models used to understand short‐term epizootic dynamics associated with a single 
event can be traced back to Kermack and McKendrick (1927), who developed the SIR 
model to describe epidemic dynamics. Instead of SIR dynamics, baculovirus systems 
consist of susceptible individuals, infected individuals, and pathogen, since there is little 
evidence that infected individuals recover. If the simplifying assumption is made that all 
baculovirus infections are lethal, we need only consider the number of susceptibles and 
the amount of pathogen in the system, since all infected individuals eventually become 
pathogen (Dwyer et al., 2000). This assumption is met by the experimental methods 
described earlier. Mathematically, the equation for the susceptible larvae S  takes the 
form of the following differential equation:

	
dS
dt

SV= −β . 	 (12.1)

Here, the change in susceptible larvae over time is simply a product of the disease trans-
mission coefficient β  times the number of susceptibles S  and the amount of virus in 
the system V . The transmission parameter β  encompasses the whole of the infection 
process and can be thought of as the fraction of encounters between the virus and a 
susceptible larva that leads to an instantaneous infection. As with all models (empirical, 
mechanistic, or simulation‐based), it is important to consider all the assumptions. The 
main ones for the model of susceptible populations given here are that per capita trans-

mission i.e., 1
S
dS
dt





  is linear and that all individuals are equally susceptible to becom-

ing infected. Relaxing this assumption, or changing the model structure to better fit the 
biology of the system and the data, leads to new insights into the transmission process. 
Equation 12.1, however, serves as a useful starting point.

By integrating equation 12.1 and using experimental data, estimates of the transmis-
sion rate β  can be easily calculated. In an experiment, the amount of virus or the 
number of cadavers in the system at the beginning of the experiment V ( )0  is known, as 
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is the initial number of susceptibles in the experimental treatment S( )0 . Here, 0 refers 
to the start of the experiment. After conducting the experiment until time T , the num-
ber of susceptible individuals (i.e., the number of individuals that pupate rather than die 
from an infection) is also known, S T( ) . These data can be easily plugged into the inte-
gral of equation 12.1, which is integrated from time 0  to 
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linear model held true (equation 12.1). A simple solution to this problem would be to 
raise the number of susceptibles or the amount of virus by a power (Hochberg, 1991), 
which would result in a nonlinear model that could better fit the data. This phenomeno-
logical model then takes the form:

	
dS
dt

S Vg h= −β . 	 (12.3)

Here, g  and h  are the nonlinear effects on transmission of susceptible and infected 
population densities, respectively (Hochberg, 1991). However, while this power model 
will fit the nonlinear data better, the biological mechanism or mechanisms driving the 
nonlinear fit remain unknown. In this instance, what exactly does g  or h  mean from a 
biological standpoint?

A potential mechanism that may drive the nonlinearity in infection rates goes back to 
one of the main of assumptions of the linear model: that all individuals have the same 
transmission rate β . In Dwyer et al. (1997), the authors assumed that individuals differ 
in their susceptibility to virus. Essentially, some individuals are more susceptible than 
average and others are less susceptible than average. Thus, there was not a single trans-
mission rate, but a mean transmission rate with some variability about the mean rate. 
Therefore, the transmission rate became a distribution rather than a single point esti-
mate. The modified equation accounting for differences in susceptibility (i.e., heteroge-
neity in the transmission rate) thus becomes:

	

dS
dt

S t
S

SV= − ( )
( )









β

0

2C

. 	 (12.4)

Here, β  is the mean transmission rate. The transmission rate is scaled by the ratio of 
the number of susceptibles currently in the population S t( )  divided by the number of 
susceptibles at the start of the epizootic S( )0 . The ratio is raised to the square of the 
coefficient of variation C  associated with the transmission rate. Integrating equation 
12.4 results in:

	
− ( )

( )








 = + ( )( )ln ln

S T
S C

C V T
0

1 1 02
2β . 	 (12.5)

Here, T  is once again the time that the experiment ran. For equation 12.5, instead of 
estimating just β  from the data, two parameters need to be estimated, β  and C . For 
any single level of heterogeneity, at low pathogen levels, highly susceptible individuals 
become infected and transmission rises quickly (Fig. 12.1, solid lines). However, as 
pathogen levels increase, transmission tapers off, since only highly resistant individu-
als remain in the population. As the heterogeneity in the population increases, the 
coefficient of variation C  increases, which results in fewer individuals becoming 
infected at the end of the epizootic as pathogen levels increase (Fig. 12.1). If, instead, 
C  decreases and goes to zero (i.e., little variability in C ), the dynamics become similar 
to the linear equation (equation 12.2). While equation 12.5 was developed with epizo-
otics in mind, it borrows from work by Anderson and May (1991) on HIV spread and 
how varying contact rates influence HIV transmission. Thus, equation 12.4 represents 
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another example of the give and take between epizootiological and epidemiological 
research.

Once a model is developed, it is important to test it. Dwyer et al. (1997) exemplified 
this approach by showing the stepwise process of confronting models with data. In a 
series of experiments on the invasive gypsy moth (Lymantria dispar) and its species‐
specific baculovirus, Lymantria dispar multinucleopolyhedrovirus (LdMNPV), the 
authors tested whether the linear (equation 12.1) or the nonlinear (equation 12.4) model 
explained the data better, using a series of experimental epizootics. However, it should 
be noted that baculoviruses do not represent the only pathogen in the system. 
Entomophaga maimaiga, a fungal pathogen, also infects gypsy moth larva (Hajek, 
1999), but infection rates can be either density‐independent (Liebhold et al., 2013) or 
density‐dependent (Hajek et al., 2015) according to the weather conditions (Hajek and 
van Nouhuys, 2016). LdMNPV, unlike E. maimaiga, is always strongly density‐depend
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models to the data remained a problem until information theory began to gain a foot-
hold in the wildlife literature (Anderson et al., 2000) and was highlighted in two influ-
ential books (Hilborn and Mangel, 1997; Burnham and Anderson, 2002).

12.4.1  Akaike Information Criterion

An information‐theoretic approach to data analysis became widely used after the 
publication of Burnham and Anderson (2002). This approach allows a researcher to 
compare multiple models (i.e., alternative hypotheses) and determine which best fit the 
data. This is in direct contrast to classical statistics, which focuses on either accepting 
or rejecting a null hypothesis. The rejection of the null hypothesis simply means that the 
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to feed. After 2 days, we collected the larvae and reared them until pupation or death. 
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information about the system. The basis for the approach stems from Bayes’ theorem, 
which states:

	 P Θ Θ Θ| |Data Data( ) ∝ ( ) ( )π L 	 (12.9)

where the posterior probability of the model parameters Θ  given the data is propor-
tional to ( ∝ ), the prior probability of the parameters π Θ( )  times the likelihood of the 
data given the model parameters L Data |Θ( ) . In the past, the implementation of a 
Bayesian approach was often limited due to the complexity of the computations associ-
ated with the analysis. Recently, a proliferation of Bayesian books with ecological per-
spectives (e.g., Clark, 2007; Kéry, 2010; Hobbs and Hooten, 2015) and the availability of 
freeware programs (e.g., WinBugs, JAGS, STAN) have made Bayesian approaches much 
more accessible.

A distinct advantage of Bayesian methods is that they provide a framework for incor-
porating prior information about a system (e.g., preliminary studies), which is especially 
valuable when data are sparse. Typically, prior information enters into the classical 
analysis framework in the discussion when the authors state whether their current find-
ings are similar to or different from those of previous studies (Hille Ris Lambers et al., 
2005). In a Bayesian approach, the prior contains quantitative information and becomes 
a parameter in the analysis ( π Θ( )  in equation 12.9). If no prior information is available, 
vague priors can be used, which contain relatively little information. Explicitly stating a 
prior can be controversial to some, but if individuals are uncomfortable selecting a 
prior, the easiest way to minimize prior influence is to overwhelm it with data (Hobbs 
and Hooten, 2015). However, the use of informed priors makes the most of previously 
hard‐won data and represents a powerful approach to developing mechanistic models 
for understanding epizootic dynamics.

A fundamental difference between a Bayesian approach and more classical approaches 
stems from the difference in how the parameters are treated. Classic frequentist 
approaches assume that a parameter’s value is fixed and that the exact estimate becomes 
better resolved as sample size increases (Hobbs and Hooten, 2015). In contrast, Bayesian 
approaches assume that a parameter is a random variable drawn from a distribution. 
This is the difference between a single value for quantifying disease transmission rates, 
which is estimated with increasing precision, and a distribution of uncertainty reflect-
ing the inherent variability of the transmission rate (Ellison, 2004; Hobbs and Hilborn, 
2006). A more in‐depth examination of Bayesian analysis from a philosophical perspec-
tive, as touched upon earlier, can be found elsewhere in the literature (e.g., Dennis, 
1996; Ellison, 1996, 2004).

12.5.1  Fitting a Bayesian Model

For the linear model (equation 12.1), and assuming there is no difference in the treat-
ment effects, a simple Bayesian model can be constructed such that:

	 y p Ni i i∼ ( )binomial , , 	 (12.10)

	 ln p V Ti( ) = − ( )β 0 , 	 (12.11)

	 β ∼ ( )lognormal , .0 1000 	 (12.12)
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visually or can be used to compute a Bayesian p‐value ( pB ), which quantifies the fre-
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the same across treatments. Note, for the WAIC, that there are no equivalent metrics 
associated with model comparisons, such as weights used in the AIC (see earlier). 
However, the use of the WAIC continues to be developed and refined. When applied to 
fall armyworm virus data, the model results show that the coefficient of variation C  
increases as temperatures increases, which results in an increase in overall transmission 
at higher cadaver densities (Fig. 12.2). Using the WAIC, the same conclusion can be 
drawn: that when temperatures rise the coefficient of variation associated with transmis-
sion declines and the dynamics become more and more similar to linear transmission 
dynamics (Elderd and Reilly, 2014). At the end of the day, both the AIC and the WAIC 
result in the same best model. The advantage of using a Bayesian framework becomes 
more readily apparent as the models considered become increasingly complicated.

12.6  Long-Term Dynamics

The focus, so far, has been on single occurrences of a high prevalence of disease in a 
population (i.e., a single epizootic). Considerable research also focuses on modeling the 
long‐term dynamics of insect populations driven by semiregular epizootic events. As 
this research has shown via the use of mechanistic models, epizootics drive or help 
drive the boom‐and‐bust population cycles often associated with insects, particularly 
those of economic concern.

As previously mentioned, Anderson and May’s (1980) seminal paper combined ideas 
from two often disparate fields of research: predator–prey dynamics and epidemiology. 
Most previous efforts in modeling disease outbreaks focused on single epizootic events. 
These models are best exemplified in the epidemiological literature as the SIR models 
(Kermack and McKendrick, 1927), in which a main assumption is that the overall popu-
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May, 1979). This approach works well with questions focused on near‐term conse-
quences, such as, “How many individuals will become infected over the course of an 
epizootic?” On the other hand, predator–prey models focus on the long‐term popula-
tion dynamics of prey and their predators, which are based on the classic work of Lotka 
(1932) and Volterra (1926). Anderson and May used ideas from both fields to construct 
a model showing that larch bud moth (Zeiraphera diniana) outbreaks could be driven by 
host–pathogen interactions (Anderson and May, 1980). Surprisingly, prior to their work, 
ecologists generally ignored the ability of pathogens to control the population dynamics 
of an insect (Anderson and May, 1981). Interestingly, more recent work on the same 
larch bud moth system has shown that parasitoids, not pathogens, drive the boom‐and‐
bust cycles (Kendall et al., 1999; Turchin, 2003). When expanding the model to include 
spatial dynamics, dispersal, along with plant quality, can play an important role (Bjørnstad 
et al., 2002). The change in the driver of the cycle from the pathogen to the parasitoid 
exemplifies the importance of continually confronting observational data with mecha-
nistic models and modifying a model as new data and new hypotheses emerge.

12.6.1  Long-Term Dynamics: Confronting Models with Data

For the univoltine gypsy moth, the short‐term dynamics associated with epizootics dur-
ing the larval phase and the long‐term dynamics associated with adult reproduction can 
be considered separately. First, the epizootic occurs (a within‐generation process), and 
then reproduction occurs (a between‐generation process). A number of mechanistic 
models have been developed to describe this within‐ and between‐generation process 
(e.g., Dwyer et al., 2004; Bjørnstad et al., 2010; Elderd et al., 2013). The general gestalt of 
these models is summarized nicely by Fuller et al. (2012).

To start off, consider the short‐term or within‐generation dynamics, which are gov-
erned by a series of differential equations that track the entirety of the epizootic process. 
The equations are:

	

dS
dt

S t
S

SV= − ( )
( )









β

0

2C

, 	 (12.15)

	

dE
dt

S t
S

SV m E1
10

2

= ( )
( )









 −β δ

C

, 	 (12.16)

	
dE
dt

m E m E i mi
i i= − = …( )−δ δ1 2, ,  , 	 (12.17)

	
dV
dt

m E Vm= −δ µ . 	 (12.18)

Here, the equivalent terms have the same meanings as before (see equation 12.4). A 
major change from the classic SIR model is reflected in the fact that there is now an 
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class in the model, some larvae will instantly become pathogen, as exposed individuals 
continually move at an exponential rate out of the single exposed class (Keeling and 
Rohani, 2008). By allowing for m  total stages, the infected stages becomes a sum of 
exponential distributions, which is a gamma distribution with a mean of 1/δ , where δ  
is the average speed of kill, and a variance of 1/mδ . The number of stages depends 
upon both the mean and the variance estimates of the speed of kill. For gypsy moth 
larvae, the best estimates are 1/δ  = 12 days and m  = 20 (Fuller et al., 2012). To reiter-
ate, equations 12.15–12.18 only describe the within‐season dynamics of the insect host 
when it is susceptible and succumbs to the baculovirus.

Long‐term or between‐season dynamics of the host population track host reproduc-
tion after the epizootic ends. Recall, the epizootic ends either due to the uninfected 
individuals pupating or due to epizootic burnout (Dwyer et al., 2000; Fuller et al., 2012). 
At the end of the epizootic, the equations describing the long‐term dynamics are:

	
N N I N Z abN

b Nn n n n
n

n
+ = − ( )  −

+




1 2 21 1λ , , 	 (12.19)

	 Z fN I N Z Zn n n n n+ = ( ) +1 , .γ 	 (12.20)

Here, Nn  and Zn  are the densities of the hosts and the cadavers before the epizootic in 
generation n  and I N Zn n, ( )  is the fraction of the larvae that become infected (equa-
tions 12.15–12.18). The net reproductive rate is λ . For outbreaking insects, population 
densities are kept at low levels during inter‐outbreak periods by generalist predators or 
parasitoids (Dwyer et al., 2004). For gypsy moth populations, this can take the form of a 
Type III functional response. The fraction surviving predation is represented by the 
term 1 2 2− +( )abN b Nn n/ , where a  is the maximum predation rate and b  is the 
saturation constant. Baculovirus densities depend upon the survival f  of virus derived 
from the current generation and the survival of virus γ  from previous generations. 
While it is likely that sublethal or covert infections play only a small role in the long‐
term dynamics, the preceding model also adequately describes covert infections. It 
assumes that some fraction of the virus survives from one generation to the next, which 
could be derived from covert infections. As long as this fraction is density‐independent, 
the model provides an accurate accounting of covert infections (Elderd et  al., 2013). 
Over the course of multiple generations, the modeling consists in stringing together the 
short‐term (e.g., one season for univoltine gypsy moths) epizootic followed by adult 
reproduction, which sets the stage for the next epizootic.

12.6.2  Time-Series Diagnostics

While fitting models to data using results from short‐term experiments draws directly 
from the standard statistical literature, long‐term data sets represent a different prob-
lem from an analytical perspective. They are often observational and constitute a classic 
example of an “inverse problem” (Kendall et al., 1999), such that the data collected may 
arise due to many different mechanistic processes (e.g., intraspecific density‐dependent 
regulation vs. host–pathogen interactions). How best to decide which mechanisms may 
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be responsible for the observed data is central to understanding what drives the boom‐
and‐bust cycles associated with long‐term epizootic dynamics.

For many of these observational data sets, the data are not directly fitted to the model. 
For instance, a number of papers exploring gypsy moth long‐term dynamics use defolia-
tion data as a proxy for gypsy moth population numbers (e.g., Dwyer et al., 2004; Elderd 
et al., 2008; Bjørnstad et al., 2010). To compare the model output with the observational 
data, authors often rely on matching various metrics associated with the time series of 
the data (e.g., average period between peak outbreaks or defoliation events) with the 
model output. Directly fitting the model to the data becomes increasingly problematic 
if the dynamics of the system are chaotic, since the model and the data are sensitive to 
initial conditions (Dwyer et al., 2004). Thus, instead of directly fitting the data to deter-
mine which model drives the observed dynamics, “time‐series” probes are advocated 
(Kendall et al., 1999; Turchin, 2003).

Kendall et al. (1999) were among the first advocates in the ecological literature to 
push for the use of “time‐series” probes by combining time‐series statistics with mech-
anistic population models. Previous to this paper, most time‐series analyses consisted 
of fitting nonmechanistic models that could be considered biologically naïve to obser-
vational data. On the other side of the coin were the theoretical population ecologists 
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epizootics in insect populations, they also provide a useful tool for asking questions of 
an applied nature.

12.8  Conclusion

The use of models to understand epizootic dynamics has a long history in the ecological 
literature. Much of the past debate concerning which methodology is best suited for 
moving the field forward centered on the historic false dichotomy between empirical 
and theoretical approaches, while sometimes invoking simulation‐based methods. 
However, the ability to confront models with data has led to new and exciting develop-
ments in the field, since models can now be used as hypotheses to drive research ques-
tions. While using the preceding techniques and ideas may seem easy to some and 
daunting to others, they do not necessarily need to be mastered by all. Instead, they 
represent a framework to begin a conversation about questions that can be answered, 
how to design empirical studies, and how best to use the data produced. The reason the 
false dichotomy of empiricism and theory continues to blur stems from more individu-
als being able to speak in multiple languages. Thus, mastering each technique is not 
essential, but being able to communicate across the false divide is. As the dialogue 
advances and individuals speak across their own expertise, the biology of the system 
becomes better connected to the mechanistic framework, which leads to a better 
understanding of what drives the epizootic process.
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