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abstract: The theory of insect population dynamics has shown
that heterogeneity in natural-enemy attack rates is strongly stabiliz-
ing. We tested the usefulness of this theory for outbreaking insects,
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infectious cadavers, respectively, so that transmission oc-
curs with rate parameter n. After t time units, infected
larvae die and become infectious cadavers at time t, re-
leasing occlusion bodies onto the foliage to complete the
cycle of transmission (Cory and Myers 2003). Occlusion
bodies are rendered inactive by sunlight and other envi-
ronmental factors at a rate m.

A simple way to allow for heterogeneity is to assume
that attack rates follow a probability distribution (Hassell
et al. 1991). In epidemic models, the transmission param-
eter n is effectively the natural-enemy attack rate, and so
we allow for a probability distribution of n values. Vari-
ability in n appears to be due to variability among hosts
(Dwyer et al. 1997), and so we assume in particular that
there is a distribution of n across hosts. This leads to the
model

2C

dS S(t)
¯p �n SP, (3)[ ]dt S(0)

2C

dP S(t � t)
¯p n P(t � t)S(t � t) � mP, (4)[ ]dt S(0)

where and C are the average and the CV, respectively,n̄

of the distribution of n, so that C is a measure of hetero-
geneity in the attack rate. We have thus substituted C2 for
CV2, to avoid the confusion that arises from using multiple
letters to refer to a single quantity. This model provides a
much better description of NPV epidemics than equations
(1) and (2), suggesting that heterogeneity in infection risk
plays an important role in NPV transmission (Dwyer et
al. 1997, 2002). To show how high heterogeneity in the
attack rate produces a stable equilibrium, we extend this
model to allow for multiple generations.

An important point is that the risk that insects become
infected with an NPV is usually measured by exposing
groups of larvae to a known dose of the virus and then
observing the fraction that become infected (Watanabe
1987). Because larvae that do not consume the entire dose
are discarded, such experiments effectively measure the
risk of infection given exposure, which is usually thought
of as susceptibility. In contrast, the transmission parameter
n allows for not just the risk of infection given exposure
but also the risk of exposure. Variability in both types of
risk can affect the overall risk that gypsy moth larvae be-
come infected with the NPV (Dwyer et al. 2005), and so
heterogeneity in n provides a useful measure of variability
in overall infection risk.

In previous work, Dwyer et al. (1997) attempted to
measure heterogeneity in n for the gypsy moth virus. The
confidence intervals on the resulting estimates, however,
were so large that it was impossible to determine which

was more likely, a stable equilibrium or stable cycles
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Figure 1: Dynamics of standard insect-pathogen models, which assume that infection risk is constant. A and B show the dynamics of equations
(5)–(7). In A, host reproduction , pathogen between-generation impact , and heterogeneity in susceptibility , leading tol p 5.5 f p 35 C p 0.86
stable cycles. The parameters in B are the same, except that , leading to damped oscillations and thus a stable equilibrium. C and D similarlyC p 1.03
show the effects of increasing heterogeneity for the model that incorporates stochasticity and a generalist predator by substituting equation (A21)
in the online edition of the American Naturalist for equation (6). Parameters are the same for C and D ( , , maximum predationl p 74.6 f p 60
rate , and the density at which maximum predation occurs ), except that in C, , while in D, . For this model,a p 0.96 b p 0.14 C p 0.96 C p 1.12

leads to irregular cycles with a large amplitude, but produces only small-amplitude fluctuations about the equilibrium.C ! 1 C 1 1

N p lN [1 � i(N , Z )], (6)t�1 t t t

Z p f N i(N , Z ) � gZ . (7)t�1 t t t t

Here f and g are the survival rates of pathogen particles
produced in the most recent epidemic and in previous
epidemics, respectively. We allow for the possibility of dif-
ferences in the two survival rates because particles pro-
duced in the current epidemic are likely to have a greater
chance of infecting larvae in the following generation
(Murray and Elkinton 1989, 1990). Note that, in contrast,
Anderson and May’s (1980) well-known insect-pathogen
model unrealistically assumes overlapping generations,
which is why that model shows stable cycles even in the
absence of heterogeneity in attack rates.

Although we tested the model using the gypsy moth
NPV, in fact the model applies to many different insect-
pathogen interactions. To illustrate this, we note that the

basic assumptions of the model are that the pathogen is
directly transmitted and fatal, that it affects only juveniles,
and that it must survive in the environment between gen-
erations. Directly transmitted, fatal diseases that infect only
larvae occur in a large number of insects. Pathogens with
specialized stages that allow survival between host gen-
erations are also common among insects and include vi-
ruses, fungi, and protozoa (Fuxa and Tanada 1987; Miller
1997).

Among forest defoliators in particular, there are many
species for which epidemics affecting the larval stages cause
outbreaks to collapse (Myers 1993; Moreau and Lucarotti
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Figure 2: Transmission and heterogeneity in susceptibility C for each population in our transmission experiments. Populations are arranged inn̄

order of decreasing values of . This is a box-and-whisker plot, in which the boxes show the interquartile range, while the whiskers show the rangen̄

of data values included within 1.5# the interquartile range. Values of heterogeneity C were thus usually 11, but values of transmission variedn̄

greatly.

and their NPVs. By using a general model, we are thus
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Figure 3: Experimental measurements of infection rates before and after population crashes in five gypsy moth populations. Points represent data,
and lines represent the best fit of equation (8) in each population in each year. Here we plot the log-transformed fraction uninfected,

, which makes it easier to detect changes in transmission parameters. Although the results vary across populations, infection risk� ln (S(T)/S(0))
was generally lower after crashes. Note that changes in the shape of the best-fit model are due to changes in heterogeneity C (Dwyer et al. 1997).

and Elkinton 1993; Dwyer et al. 1997, 2005; D’Amico et
al. 1998). Like dose-response experiments, these experi-
ments include a range of viral doses, but they also allow
for realistic feeding behavior, and they can be used to
estimate and C. Indeed, estimates of and C from these¯ ¯n n

experiments produce model predictions that are close to
the dynamics of natural epidemics (Dwyer et al. 2002),
suggesting that transmission rates in our experiments are
not that different from those in nature.

To reduce the uncertainty in our estimates of and C,n̄

we followed Dwyer et al. (2005) in instituting several im-
provements over previous experiments (Dwyer et al. 1997).
The most important improvement is that we used larvae
that had all reached the fourth instar, or stage, within 24
h, thereby avoiding the changes in susceptibility that occur
within the first few days of the instar (Grove and Hoover
2007). Given this change, we again allowed the initially
uninfected larvae to feed for a week in the field, and then
we reared them in the lab to see which of them had become
infected while in the field. To estimate and C, we fittedn̄

the epidemic model to the resulting data. Because in our

experiments branches were enclosed in mesh bags that
prevent the breakdown of the virus (G. Dwyer, unpub-
lished data), we can set in equations (3) anddP/dt p 0
(4), which allows us to solve equation (3) as follows
(Dwyer et al. 1997):

S(T) 22 �1/C¯p (1 � nC P(0)T) . (8)
S(0)

Here T is the length of time for which an experiment ran,
so that S(T) and S(0) are the densities of uninfected larvae
at the end and the beginning of the experiment, respec-
tively, and P(0) is the initial density of virus, in the form
of infectious cadavers; is thus the fraction un-S(T)/S(0)
infected at the end of the experiment, and and C cann̄

then be estimated by fitting equation (8) to the data, using
maximum likelihood (Pawitan 2001) and nonlinear fitting
routines (Venables et al. 2005; also see appendix).

To assess variability over space and time, we used test
larvae reared from egg masses collected over 4 years across
a wide area of the northeastern and midwestern United



834 The American Naturalist

Figure 4: Consequences of the changes in infection rates shown in figure 3 for infection risk in a full epidemic, i(Nt, Zt), as calculated from equation
(5). Because changes in heterogeneity C modulate the effects of density, we considered a range of initial host densities Nt, but for simplicity, we
assumed a constant initial infection rate of 5% (Woods and Elkinton 1987). In general, infection risk was reduced in most populations at most
densities, suggesting that infection risk is reduced after population crashes.

States (table A1 in the online edition of the American
Naturalist). Egg masses were collected from areas of a few
square kilometers or less within larger forests of tens to
hundreds of square kilometers. Each collection site, and
thus each population, was at least 50 km from all other
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Figure 5:
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Figure 6: Dynamics of host-pathogen models in which natural selection drives fluctuations in infection risk. A shows host and pathogen densities
for the host-pathogen-only model, equations (9)–(12), while B shows densities for the corresponding host-pathogen-predator model, which includes
stochasticity and a generalist predator by substituting equation (A22) in the online edition of the American Naturalist for equation (9). C and D
show the corresponding fluctuations in the average transmission rate for each model to illustrate that average transmission rises and falls in synchrony
with host density. In A and C, baseline reproduction , rate of increase of reproduction with increasing susceptibility , pathogen long-r p 0.2 l p 9
term survival , heterogeneity in susceptibility , and pathogen between-generation impact . In B and D, the parameters are theg p 0.2 C p 2 f p 14
same as in A and C, with the additions that the maximum fraction of prey consumed and the density at which predation is maximizeda p 0.967

. Note that B and D show irregular fluctuations, as in insect outbreaks in nature (Dwyer et al. 2004).b p 0.14

susceptibility and reduced digestive efficiency and thus to
a cost of resistance. Second, gypsy moth larvae in particular
are known to avoid anything on a leaf surface that has the
consistency of a virus-infected cadaver, including not just
cadavers but also molasses (Capinera et al. 1976). Ongoing
work in G. Dwyer’s lab has suggested that this trait may
cause larvae to reject leaf tissue simply because of leaf scars
(L. Eakin and G. Dwyer, unpublished data). Increases in
the sensitivity of the trait might therefore reduce both
infection risk and feeding efficiency, thereby leading to
reduced egg mass size and thus a cost of resistance.

In short, it seems reasonable to allow for a cost of re-
sistance. Also, for simplicity, we assume that heterogeneity
C is constant and that offspring have the same phenotype
as their parents, so that we ignore sexual reproduction.
These assumptions lead to the following model (see ap-
pendix):

N p (9)t�1

2C¯ ¯ ¯N [1 � i(N , Z , n )]{r � ln [1 � i(N , Z , n )] },t t t t t t t t

¯Z p f N i(N , Z , n ) � gZ , (10)t�1 t t t t t

n̄ p (11)t�1

2 2C 2 2 2C¯ ¯ ¯ ¯rn [1 � i(N , Z , n )] � l(C � 1)n [1 � i(N , Z , n )]t t t t t t t t

�



Figure 7: Range of parameter values for which cycles occur for the models in which infection risk is affected by natural selection. A, Host-pathogen
model, equations (9)–(12). Each line represents the boundary between cycles and stability for different values of pathogen between-generation impact
f, such that limit cycles occur for values of heterogeneity C below each line. There is thus a large region of parameter space for which cycles occur,
even for . B, Time between outbreaks, averaged over 100 realizations, for the host-pathogen-predator model with natural selection, equationsC 1 1
(10)–(12) and (A22) in the online edition of the American Naturalist, with . C, Coefficient of variation (CV) of time between outbreaks forf p 5
the host-pathogen-predator model with natural selection and . For gypsy moth outbreaks in nature, the average time between outbreaks isf p 5
6–10 years (Johnson et al. 2005), with CV values between 0.2 and 0.7 (Dwyer et al. 2004). The host-pathogen-predator model thus produces realistic
cycles for a wide range of parameter values.
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Figure 8: Results of transmission experiments with full- or half-sibling larvae. A shows data for full-sibling larvae from 2006. Each panel shows
infection rates for a different family, with points representing the data and lines representing the best-fit version of equation (8). B shows data for
full-sibling larvae in 2007, and C shows data for half-sibling larvae in 2007. In 2007, we used only one virus density, and so each point in B and
C represents data for a different group. On the horizontal axis in C, at each tick mark, the number before the colon is the sire number, while the
number after the colon is the sire-specific dam number; 12:2 thus refers to larvae produced by the second dam that was mated to the twelfth sire.
All dams were mated to only one sire. For logistic reasons, the number of groups varied among experiments, but in all cases each treatment was
replicated eight times.

of individuals with transmission parameter n. The key dif-
ference from equations (5)–(7) is thus that average trans-
mission is now a dynamic variable, .n̄t

For this model, we require first that because, oth-r ! 1
erwise, completely resistant hosts increase without bound
(appendix). Long-period, large-amplitude cycles then oc-
cur even for (fig. 6). As figure 6 shows, in this modelC 1 1
repeated epidemics cause average transmission to dropn̄t

sharply after outbreaks. The fecundity cost of resistance
then causes transmission to slowly rise between outbreaks,
until rising virus levels again lead to strong selection for
resistance. Cycles therefore occur even when C is high
because changes in average transmission reduce the sta-
bilizing effect of highly resistant individuals.

This model thus reconciles our experimental data with
the occurrence of cycles. More quantitatively, our estimates
of heterogeneity C produce cycles in the evolutionary
model for a wide range of values of the other parameters
(fig. 7A). Moreover, if we allow for both predation and
stochasticity by substituting equation (A22) in the online
edition of the American Naturalist for equation (9), the
average (fig. 7B) and the CV (fig. 7C) of the time between
outbreaks are close to data from real populations (Dwyer
et al. 2004; Johnson et al. 2005).

The model is also consistent with the declines in infec-
tion risk that we observed after epidemics (fig. 3). As our
AIC analyses make clear, however (table A3), the data
suggest that both and C change over time, even thoughn̄

the model allows for changes only in . Because allowingn̄

C to change over generations leads to an extremely com-
plicated model, in comparing the model to the data we
instead reanalyze the data, assuming that C is constant but
that changes over time. Table A5 in the online editionn̄

of the American Naturalist then shows that, in four cases
out of five, average transmission declined over time, as
predicted by the model. Although there were clearly
sources of variability that acted on the data that are not
accounted for by the model, the model with natural se-
lection is nevertheless best able to reconcile our experi-
mental data with the occurrence of outbreaks.

Testing Whether Infection Risk Is Heritable

Methods. A crucial untested assumption of the evolution-
ary models is that infection risk is heritable. In 2006 and

2007, we therefore carried out additional experiments to
test for family effects on infection risk and thus to test for
heritable variation. To do this, we reared larvae from in-
dividual egg masses in family groups, using full-sibling
groups in two experiments and half-sibling groups in a
third experiment. The distinction here is that in our ex-
periments from 2000 to 2003, larvae from a given pop-
ulation were reared from 25–50 egg masses mixed together,
whereas in our 2006 and 2007 experiments, larvae from
a given egg mass were reared separately from larvae from
other egg masses. Mixing egg masses provided more larvae
and thus more replicates per population, which in turn
allowed more accurate estimates of heterogeneity C. In
contrast, rearing larvae in family groups from individual
egg masses did not permit us to estimate parameters as
accurately, but it allowed us to test directly for effects of
family on virus transmission.








