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1 Details of Experimental Methods, and Additional Experimen-

tal Results

1.1 JA Application and Chemical Analyses



class of compound were calculated based on standard curves generated with oak tannins purified by

a modification of the method of Hagerman and Butler (1980).

1.2 Results from Sample Collections in the Year Following JA Spray

Previous work showed that defoliation of red oak in one year can lead to hydrolyzable tannin induc-

tion in the following year (Hunter and Schultz 1993). We therefore collected a final set of samples

from each branch in the season following our experiments, again at budburst. In the year following
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et al. 2012).

The initially uninfected larvae began feeding after leaves were fully expanded, which is when

leaf chemistry ceases to change, so defoliation during the field experiment had no effect on hydrolyzable-

tannin levels (D’Amico et al. 1998). Meanwhile, 25 uninfected larvae is a large enough number to

provide reasonable statistical power, but it prevents starvation because 25 larvae per 40 leaves leads

to defoliation levels of less than 50%. We further note that the density of initially uninfected larvae

during a field transmission experiment has little to no effect on infection rates or induced defenses

(D’Amico et al. 1998).

As in previous experiments (Dwyer et al. 2005), our protocol did not eliminate the effects of

variability in infection risk, raising the question, what is the source of the variability? The answer

is almost certainly not stochastic fluctuations in infection risk within individuals over time, because

such variability is equivalent to demographic stochasticity, and by using hundreds of insects, we

greatly reduced the effects of demographic stochasticity. Instead the source appears to be heritable

variation at loci that affect infection risk. In previous work, we showed that infection risk in gypsy

moth larvae does indeed have a heritable component (Elderd et al. 2008), and because the larvae in

the current study were all raised under the same conditions, the variability that we observed here was

also probably heritable. In gypsy moths, heritable variation in infection risk is likely maintained by

fluctuating natural selection, in combination with a fecundity cost of resistance (Elderd et al. 2008).

We did not include selection in our models, however, because we wanted to explain the defoliation

data with as simple a model as possible.

1.4 Analysis of Transmission Data

Because virus density was constant in our field experiment, and because the experiment was short

enough that none of the initially uninfected larvae became infected and died during transmission,

infection was the only process that occurred. This in turn meant that we could analyze our data

using what is known in the stochastic processes literature as a “pure-death” model, which allows

for the effects of small population size, so-called “demographic stochasticity” (Renshaw 1993).

Because we used a total of 200 host insects in each experimental treatment (8 replicates × 25 larvae

per replicate), the effects of demographic stochasticity were likely minimal, but it was nevertheless
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important to allow for such effects (Dwyer et al. 2005; Elderd et al. 2008). The pure-death process

predicts that the number of survivors per unit time follows a binomial distribution with a probability

of survival that is a function of time and a rate parameter that can be fit to the data (Renshaw 1993).

Also, because individuals vary in their risk of infection, we assume that the pure-death parameter,

which is essentially the disease transmission rate, is drawn from a gamma distribution, with mean

transmission rate ν̄ and coefficient of variation C.

Standard practice in analyzing mortality data is therefore to use a binomial distribution as a

likelihood function McCullagh and Nelder (1989), and we thus used a binomial likelihood function



variance-inflation factor was very close to the ideal value of 1, our choice of a binomial distribution

was clearly appropriate (Burnham and Anderson 2002). The best model thus explained essentially

all of the variability in our data that was not simply due to low levels of demographic stochasticity.

An important point is that allowing variabilityC to approach 0 in a nonlinear transmission model

yields a linear transmission model, and so the linear models were nested within the nonlinear mod-

els. This in turn meant that, when we fit a nonlinear transmission model to our data, it was possible

for the best-fitting value of the variability parameter to be indistinguishable from 0, in which case

the conclusion would be that the best-fitting model is instead linear. This happened for the models

for which average transmission was the same for induced and control branches but variability was

different, and for which both average transmission and variability were different for induced and

control branches. In both of these cases, however, the best-fitting model assumed that transmission

was linear only on induced branches, and not on control branches, strengthening our basic conclu-

sion. Because the best-fitting versions of these two models reduced to simpler models, we did not

include them in the AIC table in the main text.

It is also important to emphasize that when we fit a linear model to the data, the fitting routine

cannot estimate the variability parameter, and so in such cases it would not be possible for the routine

to conclude that the best model is nonlinear. This is relevant because when we fit a model for which

transmission was nonlinear for induced branches and linear for control branches, the fitting routine

instead concluded that transmission was linear for both treatments. In the AIC table in the main

text, we therefore did not include the model that assumed transmission was nonlinear on induced

branches and linear on control branches, because it was effectively the same as the model for which

transmission was assumed, from the beginning, to be linear for both treatments. As the table shows,

however, the model for which transmission was linear for both treatments provided a very poor

explanation for the data, again strengthening our basic conclusion.

An important part of our argument is that induction strongly affects variability C in particular.

This conclusion is supported by our parameter estimates for the best model, which allows for differ-

ences in both average infection risk ν̄ and variability in infection risk C between induced and control

branches. As Table S1 shows, the value of ν̄ on induced branches was moderately lower, reflecting

slightly lower average infection risk on induced branches, as in a previous laboratory experiment

(Hunter and Schultz 1993), but the value of C was much lower, reflecting much lower variability in
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Experiment Treatment Mean (95% C.I.) C.V. (95% C.I.)

Field Control 0.21 /day/m2 (0.170, 0.276) 0.96 (0.741, 1.
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Figure S2: Effects of induction on epizootic intensity. The vertical axis is the cumulative fraction

infected in a single epizootic, as calculated using the epizootic model in the main text. The “In-

duced” line is based on values of average transmission ν̄ and variability in transmission C estimated

from induced foliage, while the “Non-induced” line is based on values estimated from non-induced

foliage.
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called “negative” density-dependence, but baculovirus infection rates in nature almost invariably rise

with increasing host density, following “positive” density-dependence (Moreau et al. 2005; Woods

and Elkinton 1987). Meanwhile, fig. S2 shows that a reduction in variability in infection risk causes

the infection rate to rise more steeply with host density, which is a well-known result from epidemic

theory (Anderson and May 1991). Theory therefore shows that a reduction in variability in infection

risk due to induction should cause infection rates to rise very sharply with density, resolving the

contradiction between the original experiment and data from naturally occurring virus epizootics in

the field.

1.5 Feeding Trials and Dose-Response Bioassays

Once an insect has consumed some virus particles, infection risk depends only on the ability of the

insect’s immune response to fight off the infection, but feeding behavior can alter the risk that the

virus is consumed in the first place. In dose-response experiments, however, insects that do not

consume the entire dose are discarded, and so infection rates depend only on the insect immune

response, or on physiological factors that affect the immune response (Watanabe 1987). There are

thus no effects of feeding behavior, even though feeding behavior is important in nature (Dwyer

et al. 2005). Field transmission experiments thus have an advantage over laboratory dose-response

experiments not just because field experiments allow for more natural conditions, but also because



consuming the virus and becoming infected, P (I|C) as the probability of becoming infected given

that the virus has been consumed, and P (C) as the probability of consuming the virus. Following

basic probability (Ross 1984), we can then write,

P (I, C) = P (I|C)P (C). (S3)
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Figure S3: Effects of induction on gypsy moth feeding rate over 24 hours. Error bars indicate 1

standard error of the mean.
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leads to increases in feeding rates, in turn altering infection risk. It therefore seems likely that the

effects of induction on overall transmission were partly due to changes in feeding behavior.

In the dose-response experiment, we followed standard protocols by feeding larvae 3 µl of a

solution of virus in dH2O on leaf disks placed on top of agar squares in tightly sealed plastic cups

in the laboratory (Dwyer et al. 2005; Hunter and Schultz 1993). Larvae that did not consume the

entire leaf disk, and thus the entire dose of virus, were discarded. Control larvae were fed leaf disks

with dH2O alone. The data show that induction led to a lower infection rate at the lower dose, but

infection rates were equal at the higher dose (Table S2).

Dose (occlusion bodies)

Treatment 0 9,000 30,000

Induced 0.00 ± 0.000 0.56 ± 0.109 0.97 ± 0.017

Non-Induced 0.00 ± 0.000 0.86 ± 0.050 0.97 ± 0.032

Table S2: Results of the dose-response bioassay, comparing the effects of induced and non-induced

foliage on the probability of becoming infected given consumption of a particular dose of virus.

Each value is the mean fraction infected, calculated across 6 replicates, plus or minus 1 standard

error of the mean. Within a replicate, leaf disks were all from the same tree. Each replicate included

11-14 larvae. Out of 250 individuals in virus-control treatments, all of which were fed leaf disks in

combination with dH2O, none became infected.

The standard method of analyzing this type of data is to use generalized linear modeling to fit

a logistic distribution to the data, using the so-called “logit transform” (Collett 2003). Under this

transform, our model for the dose-response data is,

log

(
1− pi
pi

)
= β0 + β1 log10 Di. (S4)

Here, pi is the fraction infected at dose Di, and β0 and β1 are parameters that are fit to the data. We

fit versions of this model to the data under different assumptions about the effects of induction on

the model parameters β0 and β1. If there were effects of induction, then in the best model either β0

or β1



Table S3: AIC analysis of bioassay data. The best model is in bold-face.

Model AICc ∆ AICc AICc weights





however, similar field experiments have not been carried out, and apparently as a consequence the

literature on baculoviruses often invokes virus survival through covert infections, which are as-

sumed to be activated by stress at some time after infection, due to unidentified stressors (Il’inykh

and Ul’yanova 2005). Although covert infections have in fact been detected in some species of

insects (Burden et al. 2003), whether or not such infections play a role in transmission in the field

is debatable (see Fuller et al. (2012) for a brief review). Moreover, for gypsy moths in particular,

surface-disinfection of egg masses, which we used in all of our experiments, is extremely effective at

eliminating vertical transmission (Doane 1969), as it is in many other insects (Kukan 1999). For this

reason, reports of vertical transmission through the activation of covert infections can often be more

parsimoniously explained by a lack of surface-disinfection (Myers et al. 2000). It therefore seems

likely that covert infections play only a small role in virus survival in the gypsy moth, and possibly

in many other insects as well. In our model, we thus included only environmental reservoirs and

surface contamination of egg masses as mechanisms of virus survival between host generations.

It is nevertheless worth pointing out that in fact our model may be adequate to describe the effects

of covert infections as well. The crucial assumption is simply that some fraction of infections from

previous generations leads to new infections in the current generation. As long as this fraction does

not vary with insect density, and as along as such infections are either rare or occur mostly at the

beginning of the larval season, our model may provide an accurate description of the effects of covert

infections.

2.2 Re-scaling and Estimating Model Parameters

As we mentioned in the main text, we used the temporal model to develop a preliminary understand-

ing of the effects of induction on insect outbreaks, and to generate preliminary estimates of some

parameters. Before fitting model parameters to data, however, it was important to identify parame-

ters that have identical effects on the model’s predictions, as the values of such parameters will be

perfectly correlated and thus statistically non-identifiable. We therefore first re-scaled the model.

Because the infection rate depends on the epidemic model in the main text, we re-scaled both the

year-to-year state variables Nn, Zn, and Dn, and the epidemic state variables S(t), Ei(t), and I(t),
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as follows:

Ŝ(t) ≡ ν̄ S(t), (S7)

Êi(t) ≡ ν̄ Ei(t), (S8)

P̂ (t) ≡ ν̄ P (t), (S9)

N̂n ≡ ν̄ Nn, (S10)

Ẑn ≡ ν̄ρ Zn, (S11)

D̂n ≡ ψ Dn. (S12)

Allowing for this re-scaling, the epizootic model becomes:

dŜ

dt
= −ŜP̂

[
Ŝ(t)

Ŝ(0)

]C2
n

, (S13)

dÊ1

dt
= ŜP̂

[
Ŝ(t)

Ŝ(0)

]C2
n

−mδÊ1, (S14)

dÊi
dt

= mδÊi−1 −mδÊi, i = 2, . . .m, (S15)

dP̂

dt
= mδÊm − µP̂ . (S16)

Note that variability varies from generation to generation because of changes in induced defenses,

such that Cn = C0exp
(
−(D̂n + D̂0)

)
. The multi-generation model is then:

N̂n+1 = λϵnN̂n

(
1− i(N̂n, Ẑn, Dn)

) (
1−

�



µ = 0.39 /day (Fuller et al. 2012). The parameters C0, α̂, β̂ and D̂0 in contrast are related to the

dynamics of hydrolyzable tannins, and consequently have not been previously measured, while the

pathogen over-wintering parameters ϕ and γ are not well known. To produce preliminary estimates

of these six parameters, we therefore followed Kendall et al. (1999) in fitting the period and the

amplitude of the model cycles to the corresponding values from a combination of our experimental

data and observations of gypsy moth populations in nature. This required that we run the model

repeatedly to find sets of parameters for which the model output matched the data.

To understand this fitting procedure, note that hydrolyzable tannins can only be measured as

a fraction of a sample’s dry weight, because the total dry weight of leaf material in the forest is

unknown. In fitting the model to the data, we therefore calculated the amplitude of change in the

log of the hydrolyzable tannin concentration log10(D̂n + D̂0), so that total dry weight fell out of the

calculation as a scaling constant (note that this would not have been true if we had scaled away the

baseline variability C0). In our data, the difference in log10 of hydrolyzable tannin concentrations

before and after induction was 0.187 ± 0.028. Meanwhile, gypsy moth populations cycle with a

period of 5-10 years, and with an amplitude of roughly 3-5 orders of magnitude (Williams et al.

1991). We thus searched for values of α̂, β̂, D̂0, ϕ, and γ for which the amplitude of fluctuations in

the host population was at least 3 orders of magnitude, the amplitude of fluctuations in the induced

defense was within about 0.06 of 0.187, and the cycle period was at least 5 years. We then ran the

model for 200 generations, discarding the first 50 generations to avoid transients, and we calculated

the average amplitude and the period for the remaining 150 generations. To reduce the computational

burden, we temporarily eliminated stochasticity by setting the standard deviation of the random

variate σ = 0.



Figure S4: Dynamics of the temporal model. Parameter values are: scaled induction response

α̂ = 2.5, scaled induction half-saturation constant β̂ = 100, baseline heterogenity C0 = 0.04,

scaled constitutive defense level D̂0 = 3, long-term virus over-wintering γ = 0.2, reproductive rate

λ = 74.6, maximum predation rate a = 0.967, density at which predation is maximized b = 0.14

m−2, virus decay rate µ = 0.39 /day. The average amplitude of the cycles in the induced defense is

0.155, and the average amplitude of the cycles in the host population is 6.5 orders of magnitude.
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Figure S5: As in fig. S4, except here α̂ = 0.8, so that increases in the induced defenses are weak.

The cycles therefore damp out.
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This occurs because, for this value of α̂, induction is very weak, so the induced defense never rises

high enough to allow for the severe density-dependence that drives outbreaks. The temporal model

therefore suggests that induced defenses play a key role in driving gypsy moth outbreaks in nature.

The comparison of the spatial model to the defoliation data neverthless provides a more convincing

test of the model, and so the spatial model is the focus of the main text.

In figures (S4) and (S5), and in the figures in the main text, we include panels showing fluctua-

tions in the fraction of trees defoliated. To generate those panels, we translated the model prediction

of host population density into a fraction defoliated, using a statistical model and associated param-

eters from the literature, such that the statistical model parameters had been estimated by correlating

defoliation levels with egg densities (Williams et al. 1991). Note that, in the non-dimensionalized

version of the model, host density is scaled by the average transmission rate ν̄, which in our exper-

iments is expressed in terms of /day/m2 (in the model equations, the m2 unit balances the units on

infectious cadavers, which are in terms of /m2). Once we converted from units of m2 to units of

acres, we therefore still had ν̄ as a free parameter. The value of this parameter is ultimately of little

interest to our results, but for the sake of completeness we note that we achieved a good fit to the

oak-hickory defoliation data for a value of ν̄ = 0.5 /day/m2, which is well within the 95% confi-



Here dq,r is the distance between patch q and patch r, such that ω controls the degree to which

dispersal declines with increasing distance from patch q to patch r, while κ is a scaling constant that

ensures that the fraction of individuals dispersing sums to 1. For dispersal by larval ballooning, we

instead used a Gaussian kernel, because it fits the ballooning data better.

Dispersal on automobiles typically occurs when females lay their egg masses on a vehicle. Such

egg masses, however, comprise only a small fraction of the total, and so in the model we assumed

that a fraction ζ of each population disperses between patches, after the epizootic, when the egg

masses are laid (Liebhold et al. 1992). Based on previous work, we set ζ = 10−5 and ω = 0.175

km−1, respectively (Abbott and Dwyer 2008). The transported egg masses then hatch in their new

patch the following spring, at which time larvae disperse following a normal dispersal kernel, with

an average dispersal distance of 18.9m, as estimated from data on ballooning larvae (Hunter and

Elkinton 2000).

We then set the spatial scale of the model forest to be 25 km on a side, for a total of 625 km2

of forest, a typical forest size in the range of the gypsy moth in North America. We assumed that

weather stochasticity was the same across grid cells, ensuring the high level of spatial synchrony

typical of gypsy moth populations at this scale Peltonen et al. (2002). Because the defoliation data

to which we compared the model were collected in areas that had been colonized by the insect

decades earlier Johnson et al. (2006), we assumed that the insect had already infested the entire

forest.

At the beginning of each realization of the model, the probability that the tree genera at each lo-

cation were inducible was determined by drawing a U(0, 1) random variate, such that if this random

variate was less than the overall fraction inducible p, the location was strongly inducible, otherwise

it was weakly inducible. Next, following the way in which the defoliation data were summarized

(Johnson et al. 2005), we averaged the fraction defoliated across spatial locations, to produce a sin-

gle time series of defoliation for each realization of the model. To produce power spectra, we used

only the last 50 years of each 100-year simulation, roughly matching the time lag between the intro-

duction of the gypsy moth and when the data were collected, and we averaged the spectra across 100

realizations. Power spectra were calculated using the spectrum function in the R programming

language (R Development Core Team 2009).

An important point is that power spectra can have minor peaks at integral divisors of the period
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associated with a major peak, simply because of the non-sinusoidal character of the data (Chatfield

2003). For our model, however, when the forest is 43% inducible, the peaks of the power spectrum

occur at 9 years and about 4.9 years, confirming that the sub-harmonic in the model is not a statistical

artifact. The occurrence of non-sinusoidal features in most data sets is also a good reason to combine

spectral analysis with visual inspection of the time series being analyzed (Chatfield 2003). In both

this document and in the main text, we therefore base our assessment of the fit of the spatial model

partly on a visual comparison of model time series to data time series.



Figure S6: 10 realizations of the spatial model, with 43% of the forest inducible, corresponding

to oak-hickory forests. Filled circles identify time periods during which model output provides a

near-exact visual match to the defoliation data.
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Figure S7: 10 additional realizations of the spatial model, as in fig. S6.
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Figure S9: 10 additional realizations of the spatial model, as in fig. S6.
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Figure S12: 10 additional realizations of the spatial model, as in fig. S11.
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Figure S13: 10 additional realizations of the spatial model, as in fig. S11.
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Figure S14: 10 additional realizations of the spatial model, as in fig. S6.
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Figure S15: 10 additional realizations of the spatial model, as in fig. S6.
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α̂ much above the baseline values instead caused the model to do a poor job of fitting the oak-pine

data. In short, the model shows realistic output even if the values of α̂ are somewhat lower than our

best-fit values. We therefore argue that our results are not particularly sensitive to changes in the

value of α̂.

Increasing α̂ also had the effect of increasing the fraction of realizations that produced at least

two alternations of mild and severe outbreaks, as in the defoliation data. The effect is modest,

however, such that for α̂ = 4 the fraction was 0.4, instead of the 0.5 produced by α̂ = 8. The value

of α̂ on non-induced foliage also had a modest effect on this fraction, such that α̂ = 1 gives 0.5,

α̂ = 0.5 gives 0.4, and α̂ = 0.25 gives 0.2. Substantially higher values of α̂ on either inducible or

non-inducible foliage gave a poor fit to the oak-pine data. A more general point is that, because we

fit the values of α̂ for the spatial model to the defoliation data, the results of the spatial model are

not dependent on the experimental data. This is the basis of our claim in the Discussion that the

experimental and observational data provide independent lines of argument.

The reason why individual trajectories in simulated oak-hickory forests do not always match

the data has to do with the effects of stochasticity on outbreaks. Weather stochasticity is strongly

synchronizing in the model, as it is in nature (Peltonen et al. 2002), but the synchronization is

specific to either inducible or non-inducible trees. To illustrate this effect, in fig. S16, we show a

realization for which severe and mild outbreaks alternate for the entire time series (upper panel),



Figure S16: The upper panel shows a single realization of the model, for a case in which the model

produces a strict alternation of severe and moderate cycles, as in the defoliation data for oak-hickory

forests. The lower panel shows time series for all of the inducible locations and all of the non-

inducible locations, such that the data for each location are plotted separately. The lines for the

inducible locations are thus all plotted exactly on top of each other, as are the lines for the non-

inducible locations. The panel therefore shows that the respective tree types, inducible and non-

inducible, have their own synchronized cycles.
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locations of inducible and non-inducible trees, in other realizations the peaks of these distinct cycles

are not always in synchrony, and in such cases the model trajectory will not show a strict alternation

of mild and severe outbreaks. As we mentioned in the main text, the lack of an obvious sub-harmonic

in more recent defoliation data may reflect these effects (Johnson et al. 2006), although it may also

reflect the effects of the more recently introduced fungal pathogen Entomophaga maimaiga (Dwyer

et al. 2004). We reiterate, however, that a sub-harmonic never occurs by chance in model trajectories

from oak-pine forests because inducible trees represent such a small proportion of oak-pine forests.

2.3.2 Modifications of the basic model

In the interests of parsimony, in the main text we present the simplest model that can explain the data,

but here we consider alternative model structures, to show that our results are robust to changes in

assumptions about the effects of induction. First, in the main text we used a model in which induction

affects only variability in transmission, rather than average transmission, because induction had

much stronger effects on variability in transmission than it had on average transmission. More

generally, however, average transmission is strongly dependent on insect feeding and movement

behavior, which are in turn affected by leaf toughness and leaf architecture (Dwyer et al. 2005),

whereas variability in transmission is scale-independent and therefore more likely to be robust to

differences in leaf characteristics. Because the effects of leaf characteristics on transmission are

poorly understood, and because the model that leaves out such effects is more parsimonious, we

assumed that differences in host-tree genera only affect variability in transmission. To test whether

this assumption affected our conclusions, we also considered a model in which transmission rate

declines exponentially with increasing levels of the induced defense, with rate parameter η, much

as variability declines exponentially with defenses in the main model (unlike the corresponding

parameter ψ for the change in variability, this parameter cannot be scaled away). We then adjusted

η to find a value that gave an amplitude of fluctuation of log10(ν̄) that included the range seen in

our experiments (η = 0.1 gave a good fit to the experimental amplitude of 0.55). As figure (S17)



Figure S17: Effects of tannin-dependent average transmission on power spectra of the model output.

As in the main text, induced defenses lower variability in infection risk C, but in this case they also

lower average infection risk ν̄.
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As we mentioned in the main text, our basic results are robust to a moderate reduction in the

insect’s reproductive rate on non-oaks (fig. S18). In this case, the sub-harmonic in the power spec-

Figure S18: Effects of a 25% reduction in host reproductive rate on non-oak locations on the power

spectrum of the defoliation time series. Note that there is an increase in the super-harmonic in oak-

pine forests. In spite of the superharmonic, however, the time series of defoliation in oak-pine forests

do not show obvious alternation of severe and moderate outbreaks (not shown).
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Figure S19: Effects of reductions in host reproductive rate on the power spectrum when there is

no variability in inducibility across spatial locations. In all 3 cases, 43% of spatial locations are

oaks, corresponding to oak-hickory forests. Irrespective of the reduction in the reproductive rate on

non-oaks, there is no meaningful sub-harmonic.
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densities on non-oaks in the following generation. The data thus suggest that, at least some of the

time, densities on non-oaks are indeed higher than on oaks, as our model predicts. This effect occurs

in the model because virus epizootics are more severe on oaks, but an alternative explanation for the

pattern in nature is that larvae may move away from oaks near the end of the larval season (Lechow-

icz and Jobin 1983; Mauffette and Lechowicz 1984; Rossiter 1987). Unfortunately, however, there

are no data indicating which explanation is correct.

Moreover, it is not possible to allow for tree-species-specific movement rates in our model,

because of a lack of tree-species-specific movement data. Testing whether such movement would

alter our model results is therefore also not possible. Our overall argument is thus that, given the

available data, our model provides the best explanation for differences in gypsy-moth cycles between

forest types.

A final point is that we also tried different numbers of grid points, ranging from a 5× 5 grid to a

250× 250 grid, with the model results presented here based on a 100× 100 grid. As the number of

grid points increased beyond 150× 150, realizations that produced exactly alternating high and low

defoliation levels became somewhat less likely, although the power spectra were unchanged. This

effect suggests that at least mild patchiness in inducibility is necessary for alternating peaks, but the

effect is rather weak. Further research is clearly needed to understand such effects.
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