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    INTRODUCTION 

 Dynamic population models are a valuable tool for 
researchers to ask and answer questions of ecological, 
evolutionary, and conservation concern. Their utility 
becomes especially apparent when asking questions of 
an applied nature. For instance, population models have 
been used extensively to examine the growth and spread 
of invasive and endangered species (e.g., McEvoy and 
Coombs  1999 , Franklin et al.  2000 , Parker  2000 ) and 
to design species management plans (e.g., Crouse et al. 
 1987 , Doak  1995 ). Within the realm of population mod-
els, there is a wide variety to choose from. The type of 

model chosen is partially determined by the questions 
asked and the data available. The spectrum of analyses 
range from count- based approaches that directly track 
population change (Dennis et al.  1991 ) to individual- 
based models that predict population dynamics derived 
from the fates of individuals (Grimm  2005 ). Between 
these two extremes lay matrix models, which have been 
broadly adopted since fi rst introduced (Leslie  1945 , 
Lefkovitch  1965 ). 

 Matrix models, like all methods, have their limita-
tions. A well- recognized problem with constructing a 
matrix model is how to best divide individuals into age, 
size, or stage classes (Vandermeer  1978 , Moloney  1986 ). 
Integral projection models (IPMs) present a solution 
to this problem by assuming that individuals within a 
population exist along a continuous spectrum of  one 
or more quantitative traits, most often size (Easter-
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 FIG. 1 .              Flowchart diagram of  steps taken to fi t the collected data to a Hierarchical Bayesian ( HB ) model and then, using the 
model parameters, to construct an Integral Projection Model ( IPM ). 
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  METHODS 

  Integral projection models 

 Here we provide a brief  introduction to IPMs and 
direct the reader to several recent overview papers for 
further information (Rees and Ellner  2009 , Coulson 
 2012 , Merow et al.  2014 a  , Rees et al.  2014 ). Since IPMs 
are an example of  an integro- difference equation (IDE), 
additional reading on Bayesian analysis of  IDEs may be 
helpful (e.g., Wikle  2002 , Wikle and Hooten  2010 ). 

 The standard, deterministic IPM takes the following 
form, in which we describe population structure in terms 
of size ( x ,  y ):

  (2)        

 The variable  n ( y ,  t  + 1) represents the number of  y - sized 
individuals at time  t  + 1. The abundance of  y - sized plants 
changes from one time step to the next depending on the 
survival, growth, and reproduction of a population of 
 x - sized individuals over the integral from  U  to  L , which 
are upper and lower limits, respectively, of possible sizes. 
There are two paths from size  x  to  y .  p ( x ,  y ) comprises 
the survival- growth component of the IPM and can be 
decomposed into two functions that determine the prob-
ability of survival of an  x - sized individual,  s ( x ), and the 
likelihood that the individual will grow from size  x  to size  y  
over a single time step,  g ( x ,  y ), such that  p ( x ,  y ) =  s ( x )  g ( x ,  y ). 
The reproductive component,  f ( x ,  y ), represents the pro-
duction of individuals of size  y  from individuals of size  x . 
The specifi c form of  f ( x ,  y ) depends upon the organism ’ s 
life history. For example,  f ( x ,  y ) may include the number 
of offspring produced as a function of size, the probability 
of recruit survival, and the size distribution of surviving 
recruits. The IPM framework is highly fl exible and can 
easily accommodate additional, discrete demographic 
states and temporal and spatial environmental variability, 
as we demonstrate below. Together, the survival–growth 
and reproduction components form the “kernel” of the 
IPM, which is a surface of all possible demographic tran-
sitions over the course of a single time step.  

  Bayesian IPM 

 To demonstrate Bayesian approaches to IPM con-
struction and analysis, we use our demographic studies 
of  the tree cholla cactus,  Opuntia imbricata  [Hawarth] 
D.C. at the Sevilleta National Wildlife Refuge, a Long- 
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seed production in year  t . Because the long- term demo-
graphic data included random temporal and spatial 
heterogeneity (repeated observations across years and 
plots), our IPM is temporally and spatially stochastic 
(Rees and Ellner  2009 ). Dynamics of  the 1- year- old (yo) 
and 2- yo seed banks ( B  1  and  B  2 , respectively) in plot  p  
and year  t  are given by:

  (3)       

  (4)        

 The functions  P   Fl  ( x ) and  F ( x ) give the probability of fl ow-
ering and number of fl owers produced, respectively, for an 
 x - sized plant. The vectors  θ  ( t ) and  κ  ( p ) contain random 
deviates representing temporal and spatial variability, 
respectively. The integral is multiplied by the number of 
seeds per fruit ( s ) and probability of transitioning from the 
plant to the seedbank (δ) to give the number of seeds that 
enter the 1- yo seed bank. After the late- summer monsoon 
rains, plants recruit out of the 1- yo seed banks with prob-
ability  g  1  or transition to the 2- yo seed bank with proba-
bility (1− g  1 ). Seeds in the 2- yo seed bank are assumed to 
either germinate (probability  g  2 ) or die. 

 Continuous- size dynamics are given by:

  (5)        

 The fi rst term indicates recruitment from the seed banks 
to size  y , where   η (y)∼N(μR,σR)    and µ  R   and σ  R   are the 
mean and standard deviation, respectively, of the size 
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short- term study, we additionally assume that germination 
probabilities do not vary through time. 

 The recruitment model takes the form:

  (8)       

       

       
       
       

       

        
 The total number of new recruits   yR

t,p
    in plot  p  at time  t  is 

the sum of two cohorts. The fi rst cohort (  yR1
t,p

   ) is a product 
of two binomial processes (the probability of transitioning 
from the plant to the seed bank,  δ , and germinating,  g  1 ), 
where the number of trials is total seed production in plot 
 p , year  t −2 (seed production is the product of the total 
number of fruits over all plants in the plot,  y   F    t −2, p  , and the 
number of seeds per fruit,  s ). The second cohort (  y
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indirectly given the informed prior and the other related 
demographic data collected.  

  Other parameters.—  Two additional parameters were 
estimated separately: new recruit size and precensus 
recruit survival. The data were collected as part of  a 
2005–2006 census of  recruits. Full details of  the associ-
ated models are presented in the Appendix.  

  Defi ning priors.—  To start a Bayesian analysis, we need 
to fi rst choose a prior distribution for each parameter 
(Fig.  1 ). Lacking relevant prior information, we chose 
“fl at” or “vague” priors (uniform or normal distributions 
with large variance) for most of the estimated parame-
ters. To gauge the impact of an informative prior on the 

posterior, it is common to conduct a prior sensitivity 
analysis where different sets of priors are used and the 
resulting posteriors are compared (Gelman et al.  2003 , 
Elderd et al.  2013 ). For the vital rate model, we used 
only vague priors and, thus, did not conduct a sensitivity 
analysis. However, the recruitment model contained an 
informed prior (for δ). Thus, we conducted a prior sen-
sitivity analysis to determine the prior ’ s infl uence on the 
posterior estimates of the model.  

  Assessing model convergence and fi t.—  To obtain pos-
terior estimates of  the demographic parameters, we fi t 
models using Markov chain Monte Carlo (MCMC) 
simulations via JAGS, a popular and freely available 
Bayesian software package (Fig.  1 ). For each model, 

 TABLE 1 .    Median and 95% credible intervals (CIs) for the parameters used to construct the integral projection matrix. 

 Parameter  Median (95% CI)  Prior distribution 

 1- year germination intercept,   αg1     −5.12 (−5.348, −4.908)  N(0, 1000) 

 2- year germination intercept,   αg2     −5.46 (−5.742, −5.200)  N(0, 1000) 

 Precensus intercept, α φ    −1.66 (−2.343, −1.065)  N(0, 1000) 

 Plant- to- seedbank intercept, α δ  

 Informed prior  −3.09 (−3.467, −2.729)  N(−3.48, 3.33) 

 Uninformed prior  −3.04 (−3.436,−2.656)  N(0, 1000) 

 Mean seeds per fruit,  s   125 (122.9, 127.9)  U(0, 500) 

 Mean size of new recruit, µ  R    3.251 (−3.674, −2.835)  U(−50, 50) 

 SD of new recruit size, σ  R    0.74 (0.517, 1.192)  U(0, 100) 

 Mean survival intercept,   μS
α
     0.55 (−0.307, 1.578)  N(0, 1000) 

 SD of survival intercept,   σS
α
     0.92 (0.478, 2.148)  U(0, 10) 

 Survival slope, β  S    0.36 (0.310, 0.420)  N(0, 1000) 

 Spatial SD for survival,   σS
ξ
     0.17 (0.006, 0.596)  U(0, 1000) 

 Mean growth intercept,   μ
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we obtained three separate chains, each for 18 000 iter-
ations. The initial conditions for each chain were ran-
domly chosen. The fi rst 5000 iterations were discarded 
as burn- in to eliminate any transients associated with 
the initial conditions. All other iterations were retained 
to estimate the associated posterior distribution. We did 
not thin the chains (i.e., keep every m th  iteration of  the 
chain), which is routinely done in ecology (Link and 
Eaton  2012 ). Link and Eaton ( 2012 ) show that thinning 
is ineffi cient and reduces the precision of  the MCMC- 
based estimates. Others have also argued that all sam-
ples from the MCMC chain contain information about 
the parameter and, thus, all samples should be retained 
(King et al.  2010 ). 

 We assessed MCMC convergence using standard 
metrics to examine both within- chain and between- 
chain convergence. First, we calculated the Brooks- 
Gelman- Rubin statistic or   ̂R   , which compares with-
in-  and between- chain variation (Brooks and Gelman 
 1998 ). Values close to 1 indicate good between- 
chain convergence and values greater than 1.1 sug-
gest convergence problems (Gelman and Hill  2007 ). 
We also used the Heidelberger- Welch diagnostic, 
which assesses convergence of  each chain by testing 
for stationarity (Heidelberger and Welch  1983 ). The 
test is one of  many available in the R coda package 
( Plummer et al.  2006 ). Specifically, the Heidelberger- 
Welch diagnostic tests whether or not the sample chain 
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Fig.  6  shows the 95% prediction interval (PI) for each 
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with a complex life history, including process variability 
stemming from unmeasured factors that vary across years 
and plots. Once integrated into IPMs, these vital rate mod-
els allowed us to estimate demographic quantities, such 
as λ S  and their sensitivities to the vital rate parameters, of 
great interest for both basic and applied reasons. Through 
their reliance on GLMs or GLMMs, IPMs have a natural 
interface with hierarchical Bayesian methods of statistical 
modeling. Exploring and exploiting this interface, as we 
have done with the cholla case study, reveals several advan-
tages, including the ability to: incorporate data from multi-
ple studies to infer unobservable processes; accommodate 
complex variance and covariance structures; incorporate 
prior information about poorly known demographic tran-
sitions; parse out the uncertainty associated with process 
and measurement error; and propagate all uncertainty in 
the vital rates into a probability distribution for the pop-
ulation growth rate and its sensitivities. Taken in isolation, 
any one of these features may be perceived as an incre-
mental improvement over more traditional frequentist or 
maximum likelihood methods of IPM parameterization. 
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tion rather than considering the survival rates of differ-
ent size classes as independent parameters, as in a matrix 
model. Thus, the parameter savings of an IPM combine 
powerfully with HB methods to quantify spatio- temporal 
 heterogeneity,  covariance, and uncertainty in vital rates 
per se. 

 A hierarchical Bayesian approach provides a nat-
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 Differences in the methodologies between Bayesian 
and frequentist approaches also arise when interpreting 
the output. From a frequentist perspective, any quan-
tity derived from the data, including population growth 
rate, represents an estimate of the “true” value of that 
parameter, which is fi xed. The associated confi dence 
intervals, often calculated via bootstrapping, only repre-
sent the uncertainty associated with measurement error, 
although non- Bayesian approaches have been developed 
to estimate both measurement and process errors (De 
Valpine and Hastings  2002 ). From a hierarchical Bayes-
ian perspective, the estimate of population growth rate 
represents a random variable, which has an associated 
distribution. That is, there is no single “true” value and 
the population growth rate could take any value within 
the distribution. For example, some of the variability in 
λ S  (Fig.  7 ) refl ects the fact that some plots are more favor-
able than others for population growth; this is biologi-
cally meaningful spatial heterogeneity that a Bayesian 
approach allows us to quantify. Interestingly, quantifying 
this source of variability suggested that spatial hetero-
geneity was generally less than temporal heterogeneity 
(Fig.  9 ) and contributed little to the total uncertainty in 
λ S  (Fig.  7 B). Instead, most of the uncertainty was due to 
estimation error, or the variance in parameter estimates 
that arises from fi nite sampling. Temporal variability, 

per se, cannot affect the variance of λ S  because, for any 
amount of temporal variability, the stochastic growth 
rate converges on a single value (Eq.  12 ) in the absence 
of other sources of uncertainty (Tuljapurkar  1982 ). The 
dominance of estimation error in the posterior of 
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as opposed to the customization that a Bayesian analy-
sis requires. Thus, in some cases, the adequacy and rela-
tive ease of non- Bayesian approaches might make them 
a better option. However, maximum likelihood- based 
methods are less amenable to translating vital rate uncer-
tainty into uncertainty in derived quantities (Figs.  6–8 ), 
which may be particularly important in applied contexts. 
Further, maximum likelihood methods may fail entirely 
for complex data structures. For example, modeling spa-
tial process error and vital rate correlations in addition 
to temporal process error would have been much more 
challenging and perhaps impossible in a maximum like-
lihood context. 

 The posterior distribution for the stochastic growth 
rate (Fig.  7 ) allows us to make an explicitly probabilistic 
statement regarding tree cholla population dynamics: if  
the observed vital rates persist, the study population is 
projected to decline with nearly 100% probability. The 
study period (2004–2014) has included chronic drought 
and a severely cold winter in 2011, including all- time 
record low temperatures over a 4- day deep- freeze. Close 
inspection of the survival data indicated that the deep 
freeze likely caused 72% of all mortality events recorded 
during the entire study and that surviving plants had 
stunted growth. Thus, our relatively long- term study 

happened to include weather that was unusually harsh 
when considered in the context of the longer meteorolog-
ical record. The occurrence of unusually bad years likely 
amplifi ed the interannual variability in high- sensitivity 
vital rates, especially growth and survival (Fig.  8 ), which 
will generally decrease the stochastic population growth 
rate (Boyce et al. 2008)  . We hypothesize that, as the study 
continues and additional favorable years accumulate, the 
population growth rate will approach replacement levels. 

 While the hierarchical Bayesian framework works well 
with naturally hierarchical demographic data and can 
readily capture the uncertainty associated with spatio- 
temporal process error, this variability does not always 
translate to variability in population dynamics. In our 
study, the candidate model that accounted for spatio- 
temporal variability and vital rate correlations provided 
the best fi t to the demographic data with a non- spatial 
model providing similar support (Table  2 ). Since these 
two models fi t the data well, it is not surprising that their 
posterior distributions of λ S  are similar. However, the pos-
terior distribution for λ S  was surprisingly unresponsive 
to temporal vital rate correlations (Fig.  7 B). We hypoth-
esize that this occurred because the vital rates that were 
most variable across time (as well as space) were also the 
vital rates to which population growth was least sensi-
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tive (Fig.  9 ), a result predicted by theory and observed in 
other demographic studies (Pfi ster  1998 , Pfi ster and Wang 
 2005 ). Thus, it is worth noting that much of the variability 
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computationally expensive and, thus, not always feasible, 
cross- validation provides a good means of determining a 
model ’ s predictive ability. Clearly, no single model selec-
tion approach may be ideal for all data sets and ques-
tions. We refer the reader to Hooten and Hobbs ( 2015 ), 
which provides an excellent overview of current guide-
lines to Bayesian model selection. 

 Rather than selecting the best model, population 
demographers may want to combine the strength of a 
set of models or focus on model averaging. Reversible- 
jump Markov chain Monte Carlo (RJMCMC) is a com-
putational algorithm that averages across models (King 
et al.  2010 , Barker and Link  2013 ). For RJMCMC, the 
MCMC chain includes a step that allows for switching 
between candidate models. For example, to conduct an 
RJMCMC for the cholla data, at each step the chain 
would choose between one of the four models consid-
ered in Table  2 . The limited use of RJMCMC may have 
stemmed from problems of implementation for com-
plicated models (Hooten and Hobbs  2015 ). Barker and 
Link ( 2013 ) recently proposed an easily implemented 
solution to this problem by using the MCMC samples 
from each model fi t in a  post-hoc  analysis. 

 In conclusion, IPMs helped solve the problems asso-
ciated with dividing continuous demographic states 
into discrete classes. A hierarchical Bayesian framework 
enhances the utility of the IPM approach by accommo-
dating multiple data sets, incorporating complex variance 
structures, and robustly accounting for various aspects 
of uncertainty associated with demographic parame-
ters. In turn, Bayesian parameter estimates can be used 
to calculate robust probability distributions for standard 
demographic metrics such as population growth rate and 
its sensitivities or elasticities. Overall, by building along 
a hierarchical framework, Bayesian approaches provide 
a statistically sound way to get more information out of 
precious demographic data.  
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