
is i n  d a n g e r  o f  e x t i n c t i o n  i s  t h e  t r i c k y  f i r s t  

s t e p  to a n y  p r o c e s s  o f  s p e c i e s  p r o t e c t i o n .  To e v a l u a t e  t h e  c o n s e r v a t i o n  s t a t u s  

o f  a p o p u l a t i o n ,  b i o l o g i s t s  i n c r e a s i n g l y  
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7.1.1 A Genealogy 
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Lande and Orzack (1988) used these more biologically realistic age-struc­
tured models to test how well unstructured diffusion process models repre­
sent the dynamics of populations with complex life histories. In particular, 
Lande and Orzack (1988) showed that the me an and variance in growth rate 
of an age-structured population, approximated by Tuljapurkar's method, are 
similar to the estimates derived if the population is "simplified" and modeled 
by a diffusion process such as that developed by Capocelli and Ricciardi 
(1974). The use of the diffusion process allows for the calculation of all the 
extinction risk measures previously computable for only very simple models 
of population growth. In other words, Lande and Orzack (1988) showed that 
an estimate of overall population dynamics, which can be derived from sim­
ple census data (repeated counts of all or part of a population across several 
years), could be used to give good approximations of the growth rate and 
extinction risk of a complex, stage-structured population. 

7.1.2 The Basics of Count-Based PVA 

Although the theoretical developments just described created the potential to 
use DAs of population growth to assess extinction risks from count data, a 
clear set of methods to do so was stilliacking. Dennis et al. (1991) (and simi­
lar work by Braumann 1983) made these 
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mated by first transforming census data (dates and population counts) so that 
they can be described by a linear model of the rate of population change 
across a time interval versus the length of the time interval. In particular, raw 
census data should be transformed 
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1.5 x = (time between 
censuses, 

more or less) 

Fig,7.1. Linear regression of y on x for Hooker's fairybell data, where y is the log-trans­
formation of population growth between two censuses, and x is a transformation of time 
between censuses (equations given in text). The slope of the regression line gives an esti­
mate of J1 for the population, and the scatter of points about this line gives a2; these val­
ues are then used for further calculations in the diffusion approximation (DA) method 

These values, together with a starting population size and pseudo-extinc­
tion threshold (the population size at which the population is considered crit­
ically endangered or essentially extinct), can be used to calculate various 
extinction risk measures. Incorporating information on the number of cen­
suses and the length of the time series of data (in years) also allows calcula­
tion of confidence intervals about the estimates (Dennis et al. 1991). For 
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Table 7.2. Examples of uses of the diffusion approximation (DA) method of population 
viability analysis (PVA) in re cent studies 

Species Years Source 
of data 

Mammals 
Alabama beach mouse (2 populations) 7-11 Oli et al. (2001) 
Blue wildebeest 10 Nicholls et al. (1996) 
Cricetidae rodent (Akodon olivaceus) 5 Lima et al. (1998) 
Cricetidae rodent (Phyllostis darwini) 5 Lima et al. (1998) 
Didelphidae marsupial (Thylamys elegans ) 5 Lima et al. (1998) 
Eland 10 Nicholls et al. (1996) 
Giraffe 10 Nicholls et al. (1996) 
Grizzly bear 29 Dennis et al. (1991) 
Impala 10 Nicholls et al. (1996) 
Kudu 10 Nicholls et al. (1996) 
North Pacific gray whale 19 Gerber et al. (1999) 
Perdido Key beach mouse (2 populations) 7 Oli et al. (2001) 
Roan antelope 10 Nicholls et al. (1996) 
Sable antelope 10 Nicholls et al. (1996) 
Tsessebe 10 Nicholls et al. (1996) 
Warthog 10 Nicholls et al. (1996) 
Waterbuck 10 Nicholls et al. (1996) 
White rhinoceros 10 Nicholls et al. (1996) 
Zebra 10 Nicholls et al. (1996) 

Birds 
Breeding birds (35 spp. in the UK) 11-19 Gaston and Nicholls (1995) 
California condor 16 Dennis et al. (1991) 
Central Florida Red-cockaded woodpecker 12 Morris et al. (1999) 
Kirtland's warbier 39 Dennis et al. (1991) 
Laysan finch 20 Dennis et al. (1991) 
Lesser prairie chicken 12 Morris et al. (1999) 
North Carolina Red-cockaded woodpecker 11 Morris et al. (1999) 
Palila 19 Dennis et al. (1991) 
Puerto Rican Parrot 21 Dennis et al. (1991) 
White stork 16 Engen and Srether (2000) 
Whooping crane 51 Dennis et al. (1991) 

Plants 
Knowlton's cactus 11 Morris et al. (1999) 

growth rates are normally distributed) and that the "noise" of environmental 
stochasticity is small, without catastrophes or other large changes in popula­
tion growth rates from year to year. However, the distribution that the growth 
rate takes will vary depending upon the biology of the species being studied 
and the range of environmental variation that it faces. In particular, assuming 
that population growth rates should conform to a normal distribution omits 
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the possibility of infrequent years that are catastrophes or bonanzas, which 
can have extreme effects on population dynamics, despite their infrequency 
(Mangel and Tier 1994; Ludwig 1996, 1999; but see Lande 1993 and Mangel 
and Tier 1993 for models that include catastrophes). Second, the model 
assurnes that population growth in one time interval is not correlated with 
subsequent growth. However, in nature it is very common that environmental 
conditions correlate through time - for example, in many parts of the world 
droughts occur in prolonged sequences. Even more basic, the age or stage 
structure of a population provides arecord of recent events that will always 
create some autocorrelation in population dynamics (Lande and Orzack 
1988). Third, the model is density-independent, while either positive or nega­
tive density dependence clearly operates for many populations. Elaborations 
of the basic DA approach have been developed that deal with some of these 
problems. These include models that incorporate the effects of density depen­
dence (Turchin and Taylor 1992; Turchin 1993; Dennis and Taper 1994; Foley 
1994), catastrophes (Lande 1993; Mangel and Tier 1993), and spatial structure 
(Possingham and Davies 1995). Even though these models guard against 
some of the most obvious problems in the simple DA approach, they do so 
with the cost of heavier data demands and incomplete predictions of extinc­
tion-time distribution. Although some of these potential pitfalls have been 
addressed, particularly the use of bootstrapped simulations to provide para­
meter estimates for density-dependent populations (Dennis and Taper 1994), 
the limitations and complexity of these methods make them much more dif­
ficult to use or interpret with the sparse data usually available in conservation 
settings especially with respect to extinction time estimates. Due to these lim­
itations, and given that many threatened species are likely to experience rela­
tively density-independent growth, throughout the rest of this chapter we will 
focus solelyon the use and analysis of the basic density-independent DA 
approach, evaluating its ability to accurately predict population growth rates 
and extinction times for plant populations. 

A particular problem in using the DA method for plants is the invisibility of 
most seed banks. The DA method does not require absolute population counts, 
but does presume that a constant fraction of the total population is counted 
each year, so that measures of changes in m a n 3 7  T m 
 ( c j 
 - 0 . 0 3 5  T c   2 . 4 2 3  0  T d 
 ( p o p u l a t c j 
 - 0 . 0 3 5 v t o b l e m  ) T j 
 0 . 0 3 1 4 n 0 0 2 1  T c  2 . 8 5 8  0  T T d 
 3 6  T d 
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approaches simplify the real complexity of population dynamics, but this 
does not necessarily make them less useful. However, more fundamental 
aspects of the DA model have recently received criticism, calling into quest ion 
the general usefulness of this method for predicting extinction risk. As Lud­
wig (1996, 1999) pointed out, it is difficult to know how much variation in 
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and EIlner's for populations with low rand low avalues, they found more pos­
itive results for other scenarios. In addition, Meir and Fagan only explored the 
effects of observation error on relative predictive power, and did not examine 
the absolute accuracy of extinction predictions (with or without observation 
errors). 

In a second defense of PVA models, Brook Meir ar o64 exTm
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7.2 Methods 

To examine whether the DA approach can provide useful information when 
based upon a reasonable amount of data, we constructed a simulation model 
to compare DA predictions with a known population process. This modeled 
or "true" population is stage-structured and is governed by a density-inde­
pendent stochastic transition matrix. All simulations were initiated with 500 
individuals arranged in the stable stage dass vector for the mean matrix of 
that simulation. Both survival and fecundity rates were allowed to vary 
between years according to assigned means and variances. Matrix elements 
involving growth and survival were drawn from a beta distribution (i.e., a 
probability distribution bounded by 0 and 1), and fecundity rates from a log­
normal distribution. In all simulations we bounded total survival in each year 
of each dass by 1.0, proportionately rescaling the stochastically chosen matrix 
elements for a stage if their sum exceeded one. The correlations between the 
vital rates of the population were also varied. We report results for simulations 
using a correlation coefficient of either 0.08 or 0.80 between all variables. 

Each simulation consisted of an initial 50-year "past" period, over all or 
part of which census data were collected to estimate future viability, followed 
by a "future" period in which we continued to simulate the population to 
observe its fate. The future period was set at 50 years, or until the population 
hit a pseudo-extinction threshold of four individuals, for all simulations. We 
chose a 50-year time horizon to predict population performance as of i n  a l l   

in a  Td
(census )T4j
0.020841.515 0 usefuthe 
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erate the same distribution of population sizes at the junction of the past and 
future parts of the simulations (i.e., the initial population size for predictions 
of future 
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7.3 Results 

7.3.1 Predictions of Population Growth 

We first asked whether the DA method would usually provide the eorreet 
qualitative predietion of population growth or decline. For most simulations, 
the DA provided a reasonable estimate reaso525.12 .028e1T6h0.4 0 0 1027 08 l-10.412.8 0 0 1519.68 Tm6-1.224 TTj
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population should be growing; whereas the population was aetually dedin­
ing). Over the 5,000 replieate runs for all demographie and varianee rates 
used, the me an predieted fl and the mean true (or realized) fl, for the 50 
"future" years of the simulations, were almost identieal (Fig. 7.4). Further­
more, the degree of uneertainty (differenee in upper and lower eonfidenee 
limits, or the eonfidenee interval, CI) for estimated fl was eomparable with the 
range of true uneertainty in future population trajeetories (CIs of true fl) with 
even 10 years of data. More important is whether the 95 % CIs of predieted 
values largely eontain values of the same sign as that of the "true" fl, indieating 
good qualitative predictions about long-term population growth or dedine. 
While this predictive power was weak with 5years of eensus data, as the een­
sus period inereased, the approximation did a good job of predicting popula­
tion growth or dedine, at least when the mean true fl was of large absolute 
value (Fig. 7.4). However, if"true" fl is dose to zero, the DA predietions were 
mueh less reliable (i.e., the signs for the predieted Il and the "true" Il were 
switehed).1t is important to note, however, that over a 50-year future period, 
the true dynamies of these 5,000 populations from the different simulation 
runs range between growth and dedine. Thus, predieting the health of a sin­
gle population with fl"':;0 will always be diffieult, not due so mueh to estima­
tion problems as to the inherent uneertainty of vaeillating dynamics over lim­
ited time horizons. 

The 95 % CIs eneompass all but the most extreme predicted or realized 
population growth rates. In asking about the basic usefulness of forecasting 
using the DA method, it is also worthwhile to eonsider narrower eonfidenee 
limits. In Fig. 7.5, we plotted 50,80, and 95 % CIs for 10 years of eensus data. 
The 80 % CIs for most of our sets of simulations largely eneompass only qual­
itatively eorreet values of fl. This was even true for populations that experi­
enee a eonsiderable amount of variation; in the simulation with the largest 
varianee, the 80 % CI predietions were essentially all of the eorreet sign. This 
result further supports the utility of the DA method in making qualitative 
assessments of population viability (or the lack thereof). 

7.3.2 Predictions of Extinction Risk 

To examine how weIl the DA predieted extinetion risk, we first eondueted a 
logistie regression of whether or not the population went extinet over the 50-
year "future" (or forecast) period versus the DA predietion of probability of 
extinetion. Before this analysis was done, we examined the histograms gen­
erated by the data to verify that the assumptions of the logistic equation 
were not violated (e.g., most of the data points were loeated at either end of 
the distribution (i.e., they eonsisted mostly of ones and zeros)). Onee veri­
fied, this analysis was done aeross all demographie and varianee rates and 
repeated for eaeh eensus period. The results show that, over many replieates, 
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the DA predicts the probability of extinction reasonably weH (Fig. 7.6). How­
ever, it tended to underestimate the prob ability of extinction for populations 
that had an extremely low chance of extinction and overestimate extinction 
rates for aH other situations. Those populations that had low probabilities of 
extinction likely went extinct due to aseries of extremely bad years; this type 
of dramatic or catastrophic drop in ponably 
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Since the DA can, on average, give realistic estimates of extinction proba­
bilities, how weH did it predict extinction tim es? To answer this, we regressed 
the mean, median, and modal times to extinction for aH populations that went 
extinct during the forecast period of the model against the "true" time to 
extinction. Although none of these three measures of extinction time relate 
exacdy to the time to extinction, which is conditional on extinction occurring 
over a short time horizon (50 years for our simulations), they are the three 
most widely used measures of risk estimated from the DA method. The 
median and modal extinction time estimates were able to account for a con­
siderable amount of variance in extinction times (Fig. 7.7). The amount of 
variance explained increases and asymptotes as the census period increased. 
However, the mean time to extinction, except when estimated with 50 years of 
census data, accounted for litde of the variance in time to extinction. Although 
the predicted median and modal extinction times do provide useful estimates 
of extinction risk, it is worth noting that they do not provide good precision 
in estimating the "true" conditional extinction times we observed over our 50-
year time horizon (personal observation). In particular, the median overesti-
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mates, and the mode underestimates, time to extinction. This is not surpris­
ing, given the typically skewed distribution of extinction times (Fig. 7.2), but 
it does show that the simple summary statistics derived from a DA analysis 
should be interpreted cautiously when assessing the likely timing of extinc­
tion over short time horizons. 

7.3.3 Ranking Relative Risk 

In addition to estimating fl for single populations, DA predictions can be used 
to rank populations with respect to the amount of extinction risk they face, 
relative to other populations. To gauge ranking accuracy, we correlated the 
ranking of "true" versus estimated flS for sets of nine simulated populations, 
each with different combinations of the me an and variance of matrix element 
az,z (Table 7.4). Correlation between true and estimated rankings were posi­
tive for over 75 % of samples for even a 5-year census period and increased 
with greater lengths of census data (Fig. 7.8A). Although these correlations are 
often far from perfect, they do suggest that even moderate amounts of census 
data can be e
0.0283 y4c Tc 2.092 0 071 Tc 1.5 Tc 10.4 0 0 1.092 0 56p1.6kings o f  f o r  3 g a u g e  o f  4 2 t e n  A l t h o u g 0 r  3
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7.3.4 Effects of an Unseen Stage 

For all of the simulations of different life history variations, the predictive 
power of the DA method was virtually unaffected by the ability to census indi­
viduals in the smallest size dass. The different variants of the size dass vital 
rates resulted in stable size dass distributions that induded anywhere from 14 
to 18 % of the population as part of the "seed bank." Thus, even if up to one 
sixth of the population could not be censused, there was little difference in 
estimates of population health between simulations in which we were able to 
census this dass versus those in which we were not. In particular, we found lit­
tle change in the ability to rank either f1 or.05 Tc 10.49n60.0l58 0 0 10.4 2223r 



198 B.D. Elderd, P. Shahani, and D.F. Doak 

this poor predictive power arises from the inherent uncertainty of short-term 
outcomes when environmental variability is large. The key question to ask in 
a PVA is usually not what the true, long-term population behavior is, but 
rather what the range of likely outcomes is over a defined time horizon. With 
fl dose to zero, these outcomes 
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field data for parameterizing the more complex models is not necessarily 
available. The DA method employs a relatively simple technique to use count 
data to estimate population growth and extinction risk. For plants in particu­
lar, basic counts of individuals are easy and inexpensive to acquire, making 
DA methods an especially appealing way to utilize past data as weIl as current 
data from ongoing monitoring pro grams. While 
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