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Intra-guild predation (IGP) – where a top predator (IGPred) consumes both a basal resource and a competitor for that 
resource (IGPrey) – has become a fundamental part of understanding species interactions and community dynamics. 
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impacts of predator choice and host quality on the inter-
actions between predators and pathogens is currently lack-
ing. However, there are a considerable number of studies 
showing the short-term impacts of predator choice and host 
quality on the intraguild predator fitness and associated life-
history traits (e.g. predator life-span) in agricultural systems. 
By examining how predator behavior and life-history traits 
may change due to interactions with pathogens specific to 
the prey, we can gain greater insight into IGP community 
dynamics.

In general, IGP communities consist of three main 
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death. Fecundity was the mean number of eggs produced. 
To quantify survival, we extracted the mean number of con-
sumers surviving after two weeks. Finally, we defined the 
IGPred choice as the mean number of infected prey chosen 
compared to the mean number of healthy prey chosen. In 
addition to these means, we also collected standard devia-
tions and sample sizes. Many studies focused on one of the 
above traits, however, a few studies focused on two or more. 
If each life-history trait was tested independently, than 
they were included in our meta-analysis; if they were not 
independent we randomly chose only one life-history trait 
from a single experiment.

Data analysis

To standardize data reported in different scales or magni-
tudes, we calculated Hedges’ d weighted average metrics 
using means, standard deviations, and samples sizes from 
each study (Rosenberg et al. 2000). Hedges’ d incorporates 
overestimate-bias, working well for small sample sizes in 
meta-analyses (N  5). Mean effect sizes were considered 
small in the range from 0.2–0.4; moderate effects ranged 
from 0.4–0.7; strong effects ranged from 0.7–1.0 (Cohen 
1992, Gaskin and Happell 2013). Any results with a mean 
effect size greater than 1.0 were considered very strong 
(Cohen 1992, Gaskin and Happell 2013).

We calculated Hedges’ d for each study, i, as:
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Discussion

Infected prey clearly represent a poor resource regardless 
of infection type (Fig. 2), and predators respond to those 
infected prey in different ways (Fig. 3). For instance, parasi-
toids preferred healthy prey, while non-parasitoid, or strict, 
predators did not exhibit a preference for or against healthy 
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instance, using a predator that does not discriminate against 
infected prey would drive the pathogen locally extinct.

IGP theory also predicts that increased habitat complex-
ity increases long-term stability (Janssen et al. 2007), and 
empirical studies support this prediction (Finke and Denno 
2002, Okuyama 2008). Resources that become infected 
often change their movement behavior (Vasconcelos et al. 
1996). As the pathogen spreads through a population, dif-
ferential movement of infected and healthy individuals may 
set up a spatial mosaic such that certain parts of the land-
scape are dominated by either low or high quality prey items. 
�is shifting mosaic may allow for long-term IGP stability 
on a larger spatial scale. Long-term studies investigating 
IGP stability in these communities will elucidate important 
consequences for disease dynamics.

Previous theoretical work on short-term dynamics 
showed that predators should readily consume parasite-
infected prey if the cost of a potential infection for the 
predator is low and catchability of the prey is high (Lafferty 
1992). However, the model assumed that infected prey 
were trophically-transmitted and did not differ in quality. 
For our study, the parasites were concomitantly consumed 
and are lower quality as evidenced by changes in various 
life-history metrics, especially for strict predators. �ese 
metrics represent proxies for what may happen under field 
conditions; however, they are not direct measurements of 
a predator’s response to the environment when presented 
with a landscape of non-infected and infected prey. For 
instance, we do not have enough information on differ-
ences in overall attack rate and handling time between 
infected and non-infected prey (but see Jiang et al. 2011). 
Our results point to the need to better understand how 
changes in foraging strategies in the field will affect both 
short-term and long-term dynamics from an empirical and 
theoretical perspective.

We focused our attention on communities made up of 
crop pests and their natural enemies. Given that these com-
munities are simplified and potentially novel systems (Altieri 
and Letourneau 1982, Swift and Anderson 1994), they 
may not reflect the complexities of other ecological systems. 
However, to understand how intraguild predation influences 
more complex communities, it is necessary to start with com-
munities where specific interactions can be directly observed 
and tested. �ese tractable systems also represent a sub-set 
of natural communities or community modules (Holt and 
Polis 1997), which are often the focus of research in non-
agricultural systems. �ese communities isolate predators 
and pathogens and may yet hold more insights for future 
work.

�eory and empirical evidence suggest that resource 
quality affects long-term stability of an intraguild predation 
community. Given that resource quality affects both behav-
ioral and life-history traits of consumers, resource quality 
can clearly decrease the fecundity and survival of the IGPred 
over a short time scale, such as that of an experiment. While 
the long-term effects are unknown, we can speculate that the 
short-term impacts arising from changes in resource quality 
will have important consequences for system stability. Long-
term experiments are still needed to better understand the 
impacts of resource quality on IGP dynamics.   

may often be the case if the energy gain from easier to capture 
prey outweighs the cost of nutrient loss due to suboptimal 
prey (Holmes and Bethel 1972). Predators may also consume 
pathogen-infected prey if they are unable to identify a prey 
item as infected. In terms of community dynamics, preda-
tors may remove pathogens from the environment (Roy et al. 
1998); however, the predator may defecate viable pathogen 
(Beekman 1980, Biever et al. 1982, Bruck and Lewis 2002), 
thus increasing the number of infected resources (Cáceres 
et al. 2009). �e importance of the nutritional value of 
infected prey, the energetic consequences of consuming 
infected prey, and increasing or decreasing pathogen avail-
ability in the community are important topics that require 
further investigation (Johnson et al. 2010) and are likely to 
vary among predators and pathogens.

Parasitoids may be either the IGPred or the IGPrey (Hochberg 
et al. 1990, �omas et al. 2006). �ey are the IGPrey when 
pathogens kill a parasitized host before the parasitoid can 
complete development (Furlong and Pell 1996, �omas 
et al. 2006), and are the IGPred if they finish development in 
the host, thus reducing the amount of host available or even 
killing the pathogen (Pell et 
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