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Abstract
The standard approach to modeling survival times, or more generally, time to event
data, is often based on parametric assumptions that may not fit the data collected well.
One of the goals of this article is to discuss and compare several commonly used para-
metric and non-parametric, as well as a Bayesian semi-parametric method for survival
data. We do so in the context of the data from an experimental system where insect
herbivores become infected when consuming a lethal virus along with the plant on
which the virus resides. We used data collected on individual insects that were fed
known doses of virus along with varying genotypes of a single plant species (soybean),
to compare how the insect’s diet affects its time to death. Through hazard characteriza-
tion and model selection, we found that the flexible semi-parametric analysis is better
at describing the time-to-death data while maintaining a relatively parsimonious form.
Unlike the standard parametric and non-parametric approaches, the Bayesian semi-
parametric approach better captured the rapid decline in the hazard function after a
window of time where the host was most vulnerable to the virus. For our study system,
being able to accurately model time to death and quantify how plant genetics affects
within-insect disease processes allows us to gain a better understanding of the host-
pathogen interaction at an individual level. While we show the appropriateness of the
Bayesian semi-parametric approach for infection data, this method readily applies to
data sets concerned with characterizing a time until any event.
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looking at a wide variety of survival models, we obtained a good characterization
for the hazard and survival function of our host study organism, the fall armyworm
Spodoptera frugiperda. We found that the Bayesian semi-parametric MRH models
performed better at capturing the characteristics of the distribution associated with the
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3 Modeling fall armyworm time to death

The experiment described above gives rise to data of the form

(ti j , ci j ); i = 1, . . . , k; j = 1, . . . , 10,

where ti j represents the time of death or time of censoring (within 12-h intervals) of
the i th larva in the j th soybean genotypic group (with the artificial diet being treated
as the 10th group). We have right censored mortality data for 122 larvae that survived
the experiment. The censoring indicator, ci j is a binary variable with 0 denoting right
censoring (death not observed within the experimental time frame) and 1 otherwise
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Table 1 Table of estimated
Kaplan–Meier mean and median
survival times (in days) for each
genotype along with the
respective sample sizes
(Brookmeyer 2014)

Genotype Median Mean Sample size

Williams 6.42 7.15 44

Stonewall 6.23 7.42 59

Gasoy 6.68 7.26 57

Bragg 6.17 7.01 56

Braxton 6.74 7.20 60

Clark 6.74 7.37 59

Davis 6.38 7.38 60

Tracy 6.67 7.41 54

Cook 6.13 6.62 45

Diet − 9.49 60

The median survival time for the Diet group is not calculated because
the diet survival function does not fall below 0.5 in our data set

To start, we consider distributions drawn from the extensive family of generalized
gamma distributions such as Weibull, lognormal and gamma which are some of the
most commonly used distributions for parametric modeling of time-to-event data (Cox
et al 2007). Additionally, we look at various ways of building these parametric models
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our data to capture a possible peak in hazard during our study period. The likelihood
function for this model is given as:
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model is given as:
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3.3.1 Bayesian semi-parametric analysis

Here, we present a semi-parametric analysis in a Bayesian framework that estimates
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covariates, so the log-likelihood for all N larvae is:

log L(T|β, H, Rm,p, X) =
N∑

i=1

ci {log(h0(Ti ))+X ′
iβ}−exp(X ′

iβ)H0(Ti )}, (15)

where H0(T ) = − log S0(T ), is the cumulative baseline hazard. Here, X ′ repre-
sents the N × 10 design matrix of 10 group indicator covariates. The columns are
binary coded representing whether a larva, represented by a row, belongs to the
i th group.

2. Non-proportional Hazard Assumption
The log-likelihood for all N larvae in S strata together is:

log L(T|β, H, Rm,p,s, X) =
S∑

s=1

Ns∑

i=1

ci {log(h0,s(Ti,s)) − H0,s(Ti,s)}. (16)

Here, we have 10 strata representing nine genotype and one diet group. In this
model, we have no covariates so the design matrix and β are no longer present in
the likelihood function. Instead, we have the genotypes and diet being categorized
as strata s with their own baseline hazards. Thus, each Ns represents the number
of larvae in genotype s.

3.
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3.4 Model fitting

The parametric models were fitted using a custom maximum likelihood optimization
code in MATLAB, based on Newton-Raphson algorithm with numerical first- and
second-order derivatives. We specified the starting values based on the group sample
statistics such as the mean and variance. The MRH models were estimated using the
Bayesian framework and MCMC in the R package ‘MRH’ (Dukic and Dignam 2007;
Bouman et al 2005; Hagar et al 2014; Chen et al 2014) where M
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where pW AIC is defined as the effective number of parameters,

pW AIC =
n∑

i=1

varpost (log p(yi |θ)). (22)

Similarly, the log pointwise predictive density (lppd) in Eq. 21 is calculated as:

computed lppd =
n∑

i=1

log

(
1

M

M∑

m=1

p(yi |θm)

)
(23)

over M posterior draws and n data points. By comparing across all the information
criteria, we hope to choose the best model that accounts for both the goodness of fit
and the number of fitted parameters.

4 Results

For each candidate model (Table 2), we estimated the model parameters using either
maximum likelihood or Bayesian posterior mean estimates (under vague priors), and
calculated each of the information criteria scores. For the BIC and AIC computation
in MRH models we used the total number of parameters (including prior parameters
which are estimated from the data), because it is the worst case scenario for the
Bayesian MRH models, as it puts the maximum amount of penalty possible on them.
This avoids the difficulty with counting the effective number of parameters in Bayesian
hierarchical models (Spiegelhalter et al 2002), by giving an upper bound on the BIC
and AIC for these models. For the random effect models, we presented a range for
AIC and BIC, corresponding to the lowest penalty (counting only the likelihood-level
parameters and not the random effect distribution parameters) and the highest penalty
(counting all parameters, including those from the random effect distribution.)

In general, the Bayesian semi-parametric models had uniformly lower model selec-
tion criteria than any of the parametric models. The Bayesian models performed better
under the worst penalty than the parametric models under the lowest penalty. Within
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Fig. 3 Log hazard rates resulting from the maximum likelihood estimation of the individual parametric
models for each genotype and diet. The shaded regions represents the 95% pointwise confidence interval
associated with each estimate

models seem to have a difficult time capturing the decrease in the hazard function over
time, although the lognormal model does better than the rest.

Figure 4 shows the estimated hazard functions for our clustered parametric models
with lognormal distributions. The two cluster model in Fig. 4a shows a much higher
hazard rate (approximately 5 times higher) associated with consuming infected soy-
bean leaves compared to the diet group that did not consume soybean leaves. We see a
similar hazard behavior in the three cluster model in Fig. 4b. Interestingly, the almost
entirely overlapping hazard curves for the induced and non-induced genotypic groups
imply that there is very little difference in hazard associated with the two groups except
for a wider confidence band associated with the non-induced genotypes. However, as
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because while both the Weibull and gamma models are flexible and allow for haz-
ard rates that are non-constant, they are constrained to have monotonic hazard shapes.
Hence, they will fit any dataset with a non-monotonic hazard rate poorly. However, the
lognormal distribution does allow for non-monotonic shapes of hazard function (e.g.,
inverse bath-tub shaped) but still fails to capture the decrease in the hazard function
rapidly enough due to the strong smoothness property. These approaches simply fail
to maximize the information drawn from the mortality data in this case. Hence, our
results demonstrate the pitfalls of assuming a commonly used parametric form for the
mortality time for computational and analytic simplicity without further analysis of
the hazard’s shape. The apparent decrease in hazard modeled by all the MRH models
suggests that the probability of dying for the larvae decreases dramatically after the
hazard has peaked around day 7.5 of the infection. Biologically, this fits well with the
fact that if the larvae are able to survive the infection up until a certain time point, they
should be expected to survive well beyond that time point as well.

Figure 7 shows the estimated survival curves for different genotypes based on our
semi-parametric MRH approach (where the baseline hazard is jointly estimated along
with the covariate effects), and based on the Cox proportional hazard model (where
the Breslow estimator (Breslow 1972) is used to estimate the baseline cumulative
hazard). The Breslow estimator is a non-parametric maximum likelihood estimator
for the cumulative baseline hazard estimate, and is based, in part, on the Cox partial
likelihood covariate effect estimates. While the performance of this combination of
non-parametric likelihood and partial likelihood estimators in finite samples is not
entirely understood, it has been observed that it can lead to non negligible bias and
underestimated uncertainty for the hazard function (Hagar and Dukic 2015). On the
other hand, the Bayesian MRH model is explicitly formulated to estimate the joint
finite-sample uncertainty through the joint posterior distribution, which is based on
the joint likelihood for the hazard function and covariate effects. Hagar and Dukic
(2015) present an extensive comparison of the performance of the MRH model with
other commonly used, comparable semi-parametric survival models including the
Cox model. They found that the Cox model based estimators for the baseline hazard
function did not perform well in terms of bias and mean square error, unlike the MRH.
Therefore, if accurate hazard shapes and a proper quantification of the associated
uncertainty are of interest, including the option of relaxing the proportional hazard
assumption, the MRH model is a valuable option.

Our results also show that there is clearly a larger hazard associated with consuming
the virus with a soybean leaf compared to consuming the virus without ingesting leaf
tissue. Our best-supported model treats the diet as the baseline and characterizes the
hazards of each genotype as a proportion of this baseline. Thus, studying the covariate
effect of the different genotypes helps us understand the risks or benefits associated
with the fall armyworm food quality and its effect on the speed of kill. Given that
the infection process in the field involves a tritrophic interaction that includes the
host’s food resources, our results show that ignoring the effect of the resource could
be costly. Clearly, the data demonstrate that different soybean genotypes play a role
in the time to death for the host. There has been extensive work done on host and
pathogen variability and genetic diversity as a way of understanding host-pathogen
interactions (Elderd et al 2008; Myers and Cory 2016; Kennedy et al 2014; Dwyer

123
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et al 1997). However, the impact of plant genetic diversity on within host processes
has not been studied or modeled extensively (but see Shikano et al 2017). Our results
strongly suggest that any kind of within-host interaction model for the fall armyworm
should include plant genotypic variability. The importance of the resources consumed
by a host in helping or hindering individuals fighting off an infection should not be
limited to just the interactions considered here (Lively et al 2014). The next step
would be to move beyond the within-host effects and incorporate our findings in a
model examining the population-level consequences of this tritrophic interaction that
includes a plant/resource genotype component.



Environmental and Ecological Statistics (2019) 26:17–45 39

Lastly, these methods are applicable to any kind of non-death event data in ecology
and evolution where hazard (albeit interpreted differently) is of primary interest, and
show that flexibility of a semi-parametric approach can allow researchers to maximize
the amount of information drawn from their data.
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Integrating both sides from 0 to t ,

∫ t

0
h(y)dy =

∫ t

0

f (y)

1 − F(y)
dy

H(t) = − ln(1 − F(t)) [Since, F ′(t) = f (t)]
H(t) = − ln(S(t))

exp(−H(t)) = S(t).

Appendix 2: Associated Log-likelihood functions

– The corresponding log-likelihood function for Eq. 4,
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– The corresponding log-likelihood function for Eq. 5,
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– The corresponding log-likelihood function for Eq. 6,
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– The corresponding log-likelihood function for Eq. 9,

10∑

j=1

{
(ka − 1) log(k j ) − k j

θa
− log(Γ (ka)) − ka log(θa) + (kb − 1) log(θ j )

− θ j
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