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Summary

1.

 

There has been increasing recognition that catastrophes are an important factor in
modelling threatened populations. However, density dependence has generally been
omitted from models of threatened populations on the assumption that this omission
yields conservative predictions. We explore the significance of including density-
dependent catastrophes in models of threatened populations.

 

2.

 

Using an analytical model, we show that density-dependent catastrophes have a sig-
nificant effect on population persistence, decreasing mean persistence time at large
population sizes and causing a relative increase at intermediate sizes.

 

3.

 

We illustrate our results with empirical data from a disease outbreak in crabeater
seals 

 

Lobodon carcinophagus

 

 and show that intermediate population sizes have the longest
predicted persistence times.

 

4.

 

The pattern we found is qualitatively different from previous results on persistence
time based on density-independent models, in which persistence time increases with
population size to an asymptote.

 

5.

 

Synthesis and applications

 

. This study has important implications for the conserva-
tion of species that may experience density-dependent catastrophes, such as disease out-
breaks or starvation. Our results indicate that small and intermediate sized populations
may contribute disproportionately to species persistence. Thus populations that have
been dismissed as ‘marginal’ may actually be important for conservation. In addition,
culling may increase the persistence of populations that experience density-dependent
catastrophes.
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Introduction

 

Predicting persistence times and extinction rates for
threatened populations is a central focus in conserva-
tion biology and has been one of the main tools for
making important species and habitat management
decisions (Boyce 1992; Burgman, Ferson & Akcakaya
1993; Beissinger & Westphal 1998; Reed 

 

et al

 

. 2002).
Early studies used simple exponential growth models
with variation in the birth or death rates due to varying
environmental conditions (Goodman 1987; MacArthur
& Wilson 1967). These initial investigations predicted
that persistence time increased very rapidly with popu-

lation size, reaching exceedingly long periods once a
population reached a relatively small size (Shaffer 1987).
These results stimulated interest in the effect of infre-
quent, large increases in death rates, or ‘catastrophes’,
on persistence times (Ewens 

 

et al

 

. 1987). Mathematical
work on similar problems concerning extinction
and loss of alleles due to extreme mortality events or
emigration was also in progress, although it was not gen-
erally applied directly to endangered species (Brockwell,
Gani & Resnick 1982; Brockwell 1985; Ewens 1989).
Catastrophes can cause large decreases in mean persist-
ence time, which can be described as a power function
of  the population ceiling (Lande 1993). Depending
on the relative size of the catastrophes and the popula-
tion growth rate, persistence times can either increase
at an increasing or a decreasing rate with the popula-
tion ceiling (Lande 1993; Mangel & Tier 1993). These
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results have led to widespread recommendations to
increase the population sizes deemed necessary to
maximize persistence (Mace & Lande 1991; Mangel &
Tier 1993; Meffe & Carroll 1994).

However, these general results are based on a simple
treatment of  catastrophes. In fact, a lack of  attention
to the effects of  catastrophic mortality has been cited
as one of  the primary weakness of  models of  declin-
ing species (Coulson 

 

et al

 

. 2001). Catastrophes are
generally included in these models as either extreme
variation in vital rates, driven by environmental stocha-
sticity, or as mortality events occurring at random
intervals that remove a large portion of the population
(e.g. Lande 1993; Doak, Kareiva & Klepetka 1994;
Marmontel, Humphrey & Oshea 1997). Empirical evid-
ence suggests that these representations are too simple.
Catastrophes are often more complex, and in particular
may be caused by factors that have density-dependent
feedbacks. The two factors identified by Young (1994)
as the most common causes of massive die-offs, or
catastrophes, in his review of large mammal die-offs
were disease and starvation, both of which are likely to
be density-dependent. Inclusion of density dependence in
catastrophic mortality may radically change the extinc-
tion time predictions made by population models.

Density dependence has often been ignored in models
of extinction risk (e.g. Inchausti & Weimerskirch 2001),
based on some early modelling results demonstrat-
ing that this was a conservative assumption relat-
ive to extinction risk (Ginzburg, Ferson & Akcakaya
1990). However, recent results using a very well under-
stood population of feral sheep have shown that extinc-
tion risk is quite sensitive to density dependence, at
least for density dependence in the population growth
rate (Chapman 

 

et al
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throughout the eastern USA depends on density, with
larger populations experiencing the epizootic earlier
during its regional spread (Hochachka & Dhondt
2000). In addition to density-dependent transmission,
the size of the declines suffered by the infected house
finch populations also depends on density, with larger
populations suffering greater mortality (Hochachka
& Dhondt 2000). Another case study comes from a
disease outbreak that produced very high mortality
in a group of nine subpopulations of crabeater seals

 

Lobodon carcinophagus

 

 wintering on the ice in the
Crown Prince Gustav Channel in Antarctica. In this
case the probability of the disease outbreak appears to
be strongly density-dependent, but the intensity less so.

Past work on catastrophes has usually assumed density-
independence for both probability and intensity. We
first investigate how predictions for mean persistence
time change when catastrophe probability is density-
dependent and intensity is independent, and then how
predictions change when both are density-dependent.
Initially, we explore these patterns in a general model.
We then illustrate these ideas using demographic data
on crabeater seals.

 

Methods

 

 

 

To develop a model of density-dependent catastrophes
we expanded upon a birth and death process model
developed by MacArthur & Wilson (1967) and later
modified to include catastrophes by Mangel & Tier
(1993). Taylor & Karlin (1998) present an introduction
to these methods. We assume a minimum size at which
the population is extinct (the critical population size)
and known values for the maximum population size,
carrying capacity, and birth and death rates. Then the
mean time to drop to the critical population size from
any population size 

 

x

 

, assuming the population
changes by at most one individual per time step, is:

 

T

 

(

 

x

 

) 

 

=

 

 1 

 

+

 

 

 

B

 

(

 

x

 

)

 

T

 

(

 

x

 

 

 

+

 

 1) 

 

+

 

 (1 

 

−

 

 

 

B

 

(

 

x

 

) 

 

−

 

 

 

D

 

(

 

x

 

))

 

T

 

(

 

x

 

)

 

+

 

 

 

D

 

(

 

x

 

)

 

T

 

(

 

x

 

 

 

−

 

 1). eqn 1

Here 

 

B

 

(

 

x

 

) is the instantaneous birth rate at population
size 

 

x

 

, 

 

D

 

(

 

x

 

) is the instantaneous death rate at size 

 

x

 

.
This equation can be written simultaneously for all
population sizes as a vector of 

 

T

 

(

 

x

 

)’s and a matrix,
called the infinitesimal generator, containing the 

 

B

 

(

 

x

 

)’s
and 

 

D

 

(

 

x

 

)’s (Taylor & Karlin 1998). If  

 

T

 

 is the vector of
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Here the rate of  density-independent catastrophes
is 

 

ω

 

0

 

. The rate of  density-dependent catastrophes is

, where 

 

x

 

 is the current population size, 

 

x

 

th

 

is the size at which the rate is , and 

 

Γ

 

 is a parameter
allowing modification of the strength of the density-
dependence (Fig. 1). We chose this particular func-
tional form for three reasons: (i) it agrees with the
conclusion that disease outbreaks in wildlife popula-
tions generally occur when the population exceeds a
threshold value (Dobson & Hudson 1995); (ii) it matches
the observed pattern in the empirical data from cra-
beater seals that we use; and (iii) it is a relatively simple
form that requires few parameters and thus is straight-
forward to analyse. In discussing density-dependent
catastrophes we will use 

 

ω

 

1

 

, the maximum rate, to refer
to a particular catastrophe rate. The actual values for

 

C

 

(

 

x

 

) will be much less for most population sizes, with
its value reaching 

 

ω

 

1

 

 only near the maximum popula-
tion size.

In the paper we will generally discuss catastrophe
frequency as a probability instead of a rate for clarity,
therefore we show the method for conversion from
rates. This is also a necessary step for simulations, as
although the rates can be represented directly as
probabilities (B(x)∆t + o(x)∆t), these are not bounded
by 1 when ∆t is very close to 0 (Hilborn & Mangel
1997; p. 69). A change in population size occurs with
probability:

eqn 8

The probability of a particular type of change, e.g. a
birth, is the product of  the probability of  a change
(eqn 8) times the relative probability of the type of
change of interest (a birth):

eqn 9

Analogously, death and catastrophe rates can be con-
verted to probabilities by replacing the birth rate in the
numerator of the last term in eqn 9 with appropriate
rate.

We modelled the intensity of catastrophes as either a
uniform or binomially distributed decrease in popu-
lation size (Fig. 2). For the uniform distribution, if  a
catastrophe occurs, all population sizes two or more
less than the current size are equally likely outcomes.
Although we use this as a density-independent case,
the population size will have some effect on the size of
the catastrophe. On average, the population after a
catastrophe will be approximately half  of the original
population. We use the uniform distribution as our
density-independent case for three reasons: (i) if  the
size of a catastrophe were wholly density-independent,
i.e. a set value, it would either devastate the popula-
tions at small population sizes or be trivial at large
sizes; (ii) it is a common distribution used in many popu-
lation viability models; and (iii) in comparison with the
binomial model the effect of uniformly distributed
catastrophes is much less dependent on density. For the
binomial model we assume all individuals are equally
likely to die in a catastrophe with probability 1 − p. The
most likely reduction in the population size is (1 − p)
(x − 2), where x is the precatastrophe population
size (Fig. 2). Resulting populations will be concen-
trated near px rather than distributed across the range
of values; thus population reductions due to binomial
catastrophes are more sensitive to the pre-catastrophe
population size. Although it would be possible to make

ω1
x

x xth

Γ

Γ Γ+




 ω1

2
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the intensity of catastrophes more strictly density-
dependent by allowing the survival probability to
depend on density, we chose to avoid this complication
to maintain comparability with the empirical example
we use.

It is important to note that our model does not
include environmental stochasticity, otherwise known
as process error (Hilborn & Mangel 1997). To incorpor-
ate process error in a model one needs to deal with the
variation in demographic rates over time, and ideally
incorporate not only their variance, but also the covari-
ance among rates. This is a complex, but solvable prob-
lem for demographic simulation models (e.g. Doak
et al. 1994). However, incorporating process error into
the type of birth-death process model we use is difficult.
The primary problem is that it would be necessary to
take the expectation of the inverse of the matrix of
birth, death, and catastrophe rates, M, across the joint
distribution of the demographic rates:

T = Eε[−1M−1(b(ε),d(ε), c(ε))] eqn 10

Where ε denotes the process error in the birth (b), death
(d ) and catastrophe rates (c). It is important to be clear,
introducing process error does not alter the funda-
mental underlying process – the population still changes
by only single births or deaths and catastrophes – the
values in the inverse matrix are now just an expectation
across the variation in each rate.

An alternative approach for calculating equation 10
would be to discretize the joint distribution of  the
birth and death rates, calculate M for each possible
joint realization of the rates, invert each M, and then
take the expectation across these inverted matrices.
We performed this discretized analysis assuming a
symmetric beta distribution for additive process error
in either the birth rate or the death rate, holding the
other rate constant, to evaluate the effects of environ-
mental stochasticity on our model results. We varied
each rate in steps of 5% from −100% to +100%, yielding
20 possible realizations for either the birth or death
rate. We explored the effects of this additive process
error as the variance in error distribution increased
up to a maximum of 0·4. To illustrate the range of this
variance, at the maximum error variance of 0·4 there
was a 5% chance that the observed rate would differ
by 75% or more from the mean rate in any given
observation.

Incorporating process error into the birth, death,
and catastrophe model we used resulted in quantitative
changes in our results, primarily reducing the per-
sistence of small and intermediate sized populations.
However, while there were quantitative effects, the
qualitative results of our model did not change, and
thus we chose to exclude environmental stochasticity
from our analysis. It is important to note that the time
required for calculating the expectation of the inverse
matrices can be prohibitive if  the number of realiza-
tions of the process error is very large.

 

Basic demographic rates

We chose parameters based on a hypothetical species
that has one offspring per individual per year in a popu-
lation with annual population growth rates λ = 1.01
or λ = 1.05. We chose λ values slightly above 1 as an
optimistic, but realistic conservation case. We used
a birth rate of 1 per year to match our empirical exam-
ple and for ease of calculation. We calculated the death
rate for the species using the population growth rate
and birth rate (Appendix 1). We followed the basic
MacArthur & Wilson (1967) model formulation, hold-
ing these rates constant below the population ceiling,
set at 100, above which B(x) = 0 .

Catastrophe probability

We chose a range of catastrophe parameters to cover
the spread of possible values. It is important to remem-
ber that these are maximum rates, and in the density-
dependent case the rates will be substantially below
the maximum for a portion of the range of possible
population sizes. The maximum probability of cata-
strophe varied from 0·006 to 0·902. This is equivalent to
maximum catastrophe rates between 1 every 100 and 1
every 0·1 years. We used a range of ω1 values (seven)
that allowed us to explore the effect of different inten-
sities of  density dependence, without departing from
a basic sigmoidal shape that gave a maximum cata-
strophe probability of approximately ω1. The value for
xth was 75 in all of the analyses. In preliminary analyses,
altering xth had no effect on the qualitative patterns
we found, thus we fixed it at this value arbitrarily. We
analysed the model for each of the catastrophe rates as
a density-independent rate (ω0 > 0, ω1 = 0), as a density-
dependent rate (ω0 = 0, ω1 > 0) and for a selected set of
combined rates (ω0 > 0, ω1 > 0). The combined density-
independent and density-dependent case did not differ
qualitatively from the density-dependent case, so we
will not discuss these results in detail.

Catastrophe intensity

The intensity of catastrophes was constant for the uni-
form distribution model, with the average mortality
being half  of  the current population size, and the
populations remaining after catastrophes evenly dis-
tributed between the pre-catastrophe population size
and zero. For the binomial model we used survival
probabilities of 0·5, 0·25 or 0·1.

Crabeater seals Lobodon carcinophagus

In addition to these hypothetical cases, we also exam-
ined the effect of density-dependent catastrophic mor-
tality on persistence time using field data for crabeater
seals. We explore this case to illustrate our results using
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the density dependence function becomes more step-
like, the peak in persistence time at lower population
sizes becomes sharper and longer relative to the subse-
quent trough (Fig. 6). The population size with the
maximum persistence time also changes. For instance,
comparing populations with a maximum catastrophe
probability of approximately 0·4, the population with
maximum persistence time moves from 32% of the
population ceiling to 43% as the onset of density
dependence becomes more abrupt (Fig. 6).

  - 
   

When catastrophe intensity increases with density (i.e.
is binomially distributed), there is a pronounced effect
on persistence time (Fig. 7). The local maximum in
persistence time at low population sizes is sharper and
higher relative to the population ceiling relative to the
density-independent intensity case (compare Figs 7

and 6, third curve from the top). As the intensity of the
catastrophes increases, the differential in persistence
time at intermediate population sizes becomes more
pronounced. For instance, if  the maximum probability
of a catastrophe occurring is approximately 0·4 and the
individual survival probability is 0·5 when one occurs,
the predicted maximum persistence time is 5% longer
than the persistence time at the population ceiling
(Fig. 7, top curve). In contrast, if  P
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expectations for their magnitude and frequency using
entirely separate data sets. This represents a much
more nuanced view of environmental stochasticity and
catastrophes, and potentially presents a resolution to
the debate about how to separate the two sources of
variation. The model we developed follows this frame-
work, although we have chosen not to include environ-
mental stochasticity in the version we present here.

 

Our results have several ramifications for conservation
efforts. First, more detailed information on the fre-
quency and intensity of mass die-offs may be necessary
to properly manage some species. This information is
difficult to obtain, particularly in cases where there are
infrequent but very intense catastrophes. However,
even basic information on the time period between
large mortality events and some approximation of their
size would be a significant step. This information could
be gathered in the context of basic monitoring and
should be a priority for conservation organizations and
agencies.

Secondly, recommendations are often made to
alter management to increase the population size of
threatened species. This is particularly true if  density-
independent catastrophes are considered in the assess-
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Appendix 1

To determine the parameters for the crabeater seal
populations we began by assuming an annual population
growth rate, λ, an annual birth rate of 1 offspring per
female, and a 1 : 1 sex ratio. From these values we con-
structed a death rate that gave realistic average life-
times. If  N(t) is the population size at time t, b is the
instantaneous birth rate and d is the instantaneous
death rate:

eqn 1.1

Thus in a population with no deaths and one birth per
breeding pair

eqn 1·2

Because λ = er = e(b−d) and we now know eb we find that

eqn 1·3

Thus d = 0·396 for λ = 1·01 and 0·357 for λ = 1·05.
These rates are analogous to exponential decay rates.

For these rates to be realistic they need to result in rea-
sonable average lifespans given reasonable age specific
mortality rates. Although there are many ways to parti-
tion the rates it is necessary that the possibilities at least
include partitions that would be reasonable for a large
mammal.

An individual with a constant death rate of 0·396 has
a mean lifetime of 2·5 years, while a death rate of 0·357
yields an expected lifetime of  2·8 years. Using age-
specific mortality rates for a 1 year juvenile phase
between 0·85 and 0·9 and a subsequent adult mortality
rate of  0·05 we obtain a similar range of  expected

lifetimes, with an expected adult lifetime of 20 years.
While these results do not guarantee our parameters
are correct, they at least provide evidence that we are
within the range of reasonable values.

Appendix 2

We calculated the rate of  catastrophes based on
data reported by Geraci et al. (1982) using maximum
likelihood methods (Hilborn & Mangel 1997). Geraci
et al. report that in 1980, 445 harbour seals of a local
population of  600 died; this local group was a part
of  a regional metapopulation of  approximately
10 000 individuals. They report similar die-offs in 1931,
1957, and 1964. We take ti to be the time between the
ith and i + 1st catastrophe. If  the catastrophe rate is
constant:

Pr{t < time between two catastrophes < t + dt}
= ce−ctdt + o(dt) eqn 2·1

Given this assumption and the observed times between
die-offs, the maximum likelihood estimate (MLE) for c
was 0·0526. The 95% confidence interval around this
estimate is 0 < c < 0·115.

Clearly, there are other more simple methods for cal-
culating the catastrophe rate. For instance, it could be
calculated by simply dividing the number of catastro-
phes by the total number of years of observation. How-
ever, we chose the more formal MLE method because it
gives not only an unbiased estimate of the rate but also
a confidence interval. It is obvious that our confidence
interval does not have enough data points behind it
to be very well founded. However, given the paucity
of data on catastrophes, and extinctions in general, we
find it much more useful to make an educated guess
about the upper bounds of the rate rather than making
arbitrary decisions or avoiding exploring the possibil-
ities all together.
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