Jo nal of A lied Ecolog 2003 40, 1

The effect of densit \underline{S} -dependent catastrophes on pop ation persistence time

* ¢ 1 ۲**۵**

S mmar^S

 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3, .3
 ..., 3
 ..., 3, .3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
 ..., 3
1. . .3.3.3. _3 _3 _3 .3 .3. . .3.3. **5.** S n he i and a lica ion 1^{-3} 3^{-3} .3.3 . $Ke - od \quad 3 - .3 \quad , \quad , \quad 3 \quad 3 \quad , \quad V' , \quad 3 \quad .3 \quad .$

Jo nal of A lied Ecolog (2003) 40, 1

Introd ction

× 2003 _3

3 3 , 3 3 ,3 3,

...3 J 33 3 3 3 3 1.,.).

.3 .3 .3 . . .3 .3 , .3 .3 $3 (\cdot \cdot \cdot e \ al. \ 2001) \cdot \mathbf{r} , \ 3, \ 1(-) \cdot 2. \ 4 \cdot \mathbf{r} - 0 \ \& \ \ 33. \ 3 \cdot (, \ 3, \ 1(-) \cdot 2 \cdot \cdot \mathbf{r} - \mathbf{r} \ (e \ al. \ 2001) \cdot \mathbf{r}$

× 2003 .3 Jo nal of A lied Ecolog , 40, /². /¹ 861

Effec of den i de enden ca a o he

3 , 33 , 3 4	3, 3
.3 ,3 ,	3 ,
, 3 ,	& 3
2000)3 .3 .333.	,
3, 3, 3	3
	3 . ,
& _3 2000). / _3 / _3	,
, 3,3,3	3.3
.,	.3 .
Lobodon ca cino hag 3, 3	.3
3 / 3 3	3 3
, 3, 3, 3, 3,	
.3, .33, .33 .3	.3 .
. 3 .3 .3	.3 -
3 3 .	3.3.
.3 .3,33	.3
.3 . , .3 .33	3 -
3, 3, 3, .	.3
.3 , .33 -	_3.
	×
.3 .3.3 . , , ,	, .3

Methods

_3

2003 .3 , .3, Jo nal of A lied 3, *Ecolog* , **40**,

· . .3 .3 , .3 (_).3 .3 . . .3 .3

863 Effec of den i de enden

ca a o he

 .3
 .3
 .3
 .3
 .3
 .3
 .3

 .3
 ...
 ...
 ...
 ...
 ...
 ...

 .3
 ...
 ...
 ...
 ...
 ...
 ...

 .3
 ...
 ...
 ...
 ...
 ...

 .3
 ...
 ...
 ...
 ...
 ...

 .3
 ...
 ...
 ...
 ...
 ...

 .3
 ...
 ...
 ...
 ...
 ...

_3	3 33	33,3			_3
	.3	3 .3	3, 3		
,	(& ,	1)		-
.3	,		_3		3
3	, /	.3	3,,		
.3	.3 .3		, 3, .	3	-
· · ,	.3 .1		, .3	· ·	-
	, .	3		(,	,
<i>e al.</i> 14).	,	.3	,		3
3_3	3 - ,3				3.
-1 ·		3,33		,	3
3 3	3.3	.3	_3	.3	
3, .3,	3 .	3 .3	, M , /	.3 .	_3
3 3	3		.3		

$\mathbf{T} = \mathbf{E} - \mathbf{1} \mathbf{M}^{-1}(b(\varepsilon), d(\varepsilon), c(\varepsilon))$

.3 .3 (b), .3 ε 3.3 3 33 , $(d), \quad .3 \ .3 \quad .3 \quad (c), \ .3$ 3 3, 3, 3, -3, 3 .3.3 .3 3.3 .3 .3 .3 .3 .3 .3 .3 3, <u>3</u>, 3, ..., 3 M .3,.,.3,.3,.3, .3, M,. .3
 .3
 .3
 .3
 .3
 .3
 .3

 .3
 .3
 .3
 .3
 .3
 .3
-_3 _3 , _3,3_3 , _3 3. . 04. . .3 _3 . .3 . , ***%** .3. .3, .3.3.3, .3, . . 3 . 3 3 .33.3 .3, .3, .3 -.3 .3 , .3 . .33.3 .3, .3

_3 _3 , 3.3 .3 .3 .3 .3.3,3,3 .3.3.3 3 33 3 3 3 3 3 .3 .3

PÅ**T**A YAL YAL

Ba ic demog a hic a e

3.3.	, ,		, -
		3 .3	$\lambda = 1.01$
$\lambda = 1.0$ 2.	λ	, .3 ,	1, ,
.3 .3 , .3	. 3 .	3 .	
, _3 , 3 1	, 3 ,3		, , , -
			3 .3
.3 .3	, _3	.3,	3.3
, _3 ,_3 (/	1).		3,
. 1 3 &	(1,)		,
, 3 , 3	3.3 .3		· , ,
3. 3100, .	B()=0.		

Ca a o he obabili

10

Ca a o he in en i

 1
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
3 0 2, 0 2 0 1.

C abea e eal

	3 3	3.3	.3.3	· · · , ·		, -
,	3	3	3 -	3.3.3		-
.3.3		3 .3	3,	.3	,	.3
		_3	3	3.3	_3	,

× 2003 3 1 1 3 3. Jo nal of A lied Ecolog , **40**, 1 1

· , ·

× 2003 .3 , 3, Jo nal of A lied Ecolog , **40** **865** Effec of den i de enden ca a o he

× 2003 _3

970	ה ה ה ה
Effec of aen 1 -	
de enden	,
caa o he	.3.3 ,3.33 .3 .3
	3,3,3,3,3,3,3,3
	3
	., .3
	3 3 3 3 3 3 3 .
	A A PL CA O
	3, , , , 3, ,3
	3. 2.3, .3, .3 .3 -
	, 33, - , ,
	3
	33 3 , 3
	333,33.

3 3 3 3 3 3 , , 3 3 3 3 3 , , 3 3 3, 3 , , 3 3 3, 3 , , 3 3 3, 3 , , 3 3 3, 1 , , 3 3 3, 3 , , 3 3 3, 1 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 3 3 , , 4 , , 3 , , 4 , , 3 , , 4 , , 3 , , 4 , , 3 , , 4 , , 3 , , 4 , , 3 , , 4 , , 3 , , 4 , , 3 , , 4 , , 5 , , 7

× 2003 .3 , , , , , 3, Jo nal of A lied Ecolog , 40, , , , 1

Ac no edgements

C. Wilco & B. Elde d

References

- / .3 , . & . , . (1..3) / ..3 . .3
- 3 Jo nal of Wildlife Managemen , 62,
- , (1..2) ... $3 v = 3 i \dots Ann^{-1} al$ Re ie of Ecolog and S ema ic, $23, 4, 1 \pm 0$.
- . Ad ance in A lied P obabili , 17, 42 ±2.
- $\begin{array}{c} P \ obabili \ , 14, \ 0, \ 31. \\ , \ , \ J \ , \ 3 \end{array} \begin{array}{c} A \ a \ a \ c \ m \ A \ \ A \ m \ A \ m \ A \$
- nal of Animal Ecolog, **63**, 21: 244.
- e a ion, 97, 1 ..
- T end in Ecolog and E ol ion, 16, 21, 221.
- 201.
- $, \mathbf{y}_{.,}, \mathbf{y}_{.,}, \mathbf{y}_{.,}, \mathbf{y}_{.,}, \mathbf{y}_{.,}, \mathbf{x}_{.}, \mathbf{y}_{.}, \mathbf{x}_{.}, \mathbf{y}_{.}, \mathbf{x}_{.}, \mathbf{y}_{.}, \mathbf{x}_{.}, \mathbf{x}_{.$. Viable Po la ion fo Con e a ion (. . 🐒),
- ling, 2, 43, 411.

× 2003 _3 . , , 3. Jo nal of A lied Ecolog , 40, 1 1

871 Effec of den i de enden ca a o he (Pe om c oliono ammoba e) (1, 1, 4) (1, 4)

Recei ed 3 Ma 2002; e i ed e ion acce ed 9 J l 2003

Appendi 1

 $\lambda = e = e^{(b-d)}.$

Appendi 2

3, 3, 3.

12

3.3

13

	< 3	.3	_3	.3.3	< +	d
:	$= ce^{-c}d$	+ o(d)				21

3, 3, 3, 3- 3, 3, 3- $00^{2}2$, 1^{3} 3 3 $\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ \end{array}$ 3 , 3 0 < c < 0.11, <u>3</u> , <u>3</u> 3 .3 3 3 . , , _3 _3 3,3 .3 , , , .3.3 .3 , , , .3 , .3 ,3 ,3 ,3 , , , , ,3 ,- , .3 _3 _33 ______ . 3.

× 2003 .3 Jo nal of A lied Ecolog , 40, / 1