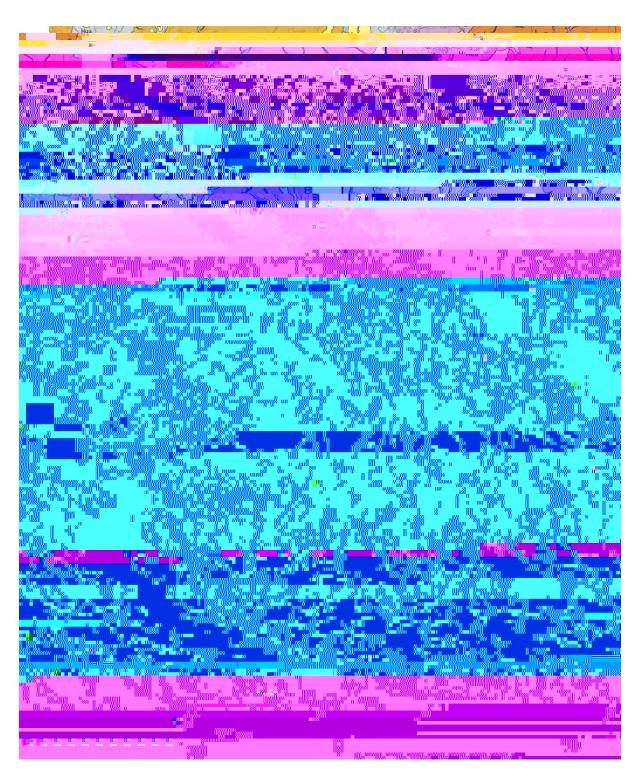

## Geology of the Pride 7.5-Minute Quadrangle, LA

## Louisiana Geological Survey


# Introduction, Location, and Geologic Setting

The Pride 7.5-minute quadrangle lies within the Plio–Pleistocene uplands east of the lower Mississippi River valley, in the drainage basin of the Amite River in the southeastern Louisiana coastal plain (Figures 1, 2). The axis of the subsurface lower Cretaceous shelf edge (Toledo Bend flexure), which trends west-northwest to east-southeast, lies directly beneath the study area. The surface comprises strata of (1) the Pliocene Citronelle Formation, Upland allogroup, characterized by the highest elevations and deeply dissected ridge-and-ravine topography lacking any original constructional landforms; (2) the Pleistocene Montpelier alloformation, Intermediate allogroup, underlying dissected but recognizable terrace surfaces along the the Amite River valley at elevations lower than the Citronelle; and (3) the Pleistocene Prairie Allogroup, at yet lower elevations, comprising an older and higher subunit (Irene alloformation) and the extensive, younger and lower Hammond alloformation, each characterized by a preserved depositional surface with indistinct constructional topography. These Plio–Pleistocene strata are covered by

subsoil with hand-operated probes and examine and sample the texture and composition of the surface-geologic map units. Field observations were then synthesized with the draft surface geology to prepare an updated integrated surface geology layer for the 7.5-minute quadrangle.



**1.** Location of Pride 7.5-minute quadrangle, southeastern Louisiana.



**2.** Surface geology of Pride 7.5-minute quadrangle and vicinity (adapted from McCulloh et al., 2009). (**P**<sub>0</sub>**uc**, Citronelle Formation, Upland allogroup (Pliocene); **Pimo**, Montpelier alloformation, Intermediate allogroup (Pleistocene); **Ppi**, Irene alloformation, Prairie Allogroup (Pleistocene); **Pph**, Hammond alloformation, Prairie Allogroup (Pleistocene); **Pp**, Prairie Allogroup, undifferentiated (Pleistocene); **Hua**, Holocene undifferentiated alluvium.)

## QUATERNARY SYSTEM

HOLOCENE

Hua Holocene undifferentiated alluvium

#### PLEISTOCENE

LOESS [pattern] Peoria Loess

PRAIRIE ALLOGROUPPp Prairie Allogroup, undifferentiatedPph Hammond alloformationPpi Irene alloformation

INTERMEDIATE ALLOGROUPPimoMontpelier alloformation

TERTIARY SYSTEM

#### PLIOCENE

UPLAND ALLOGROUP Pouc Citronelle Formation

**3.** Units mapped in the Pride 7.5-minute quadrangle.

| s            | outhe          | astructure | 17-11 W                                         | 1502517                                               |                                   |                                       |
|--------------|----------------|------------|-------------------------------------------------|-------------------------------------------------------|-----------------------------------|---------------------------------------|
|              | <b></b> 100008 | 1          | in uns                                          |                                                       |                                   |                                       |
|              |                |            | 0 II 8 88 80<br>0 II 8 88 80<br>0 II 8 88 80 80 |                                                       |                                   |                                       |
| un<br>Agemun |                | .Tom,-<br> |                                                 |                                                       | 10 x <sup>0</sup> x1<br>117<br>x1 | · · · · · · · · · · · · · · · · · · · |
|              |                |            |                                                 | n <b>an an</b> an | 2.2.2.1<br>2.2.2.1<br>2.2.2.1     |                                       |
|              |                |            |                                                 |                                                       |                                   |                                       |

**4.** Correlation of strata mapped in the Pride 7.5-minute quadrangle.

## Allostratigraphic Approach to Pleistocene Unit Definitions

In the late 1980s the LGS had begun exploring the application of allostratigraphic concepts and nomenclature to the mapping of surface Plio–Pleistocene units (e.g., Autin, 1988). In Louisiana these units show a series of geomorphic attributes and preservation states correlative with their relative ages, which eventually led LGS to conclude that allostratigraphy offers an effective if not essential approach to their delineation and classification (McCulloh et al., 2003). The Plio–Pleistocene strata for which allostratigraphic nomenclature presently has value to LGS all are situated updip of the hinge zone of northern

Within the region of the Pride 7.5-minute quadrangle, the Citronelle Formation consists largely of reddish brown sands, interbedded sands and gravels, and gravels. Paralleling the course of the modern Amite River is a well-defined gravelly trend composed largely of gravelly sands, sandy gravel and muddy sands. The gravel content of these sediments decreases and their clay content increases gulfward. The coarse-grained nature of the Citronelle contrasts greatly with the finer-grained overlying and underlying units. The gravels

the edge of the deeply eroded Citronelle Formation. The surface of the Montpelier alloformation is too fragmented for its slope to be calculated within the study area.

### Prairie Allogroup, undifferentiated (Pleistocene)

The Prairie Allogroup is a collection of late Pleistocene depositional sequences of alloformation rank (Autin et al., 1991; Heinrich, 2006). The sediments of the Prairie Allogroup accumulated within a diverse suite of coastal-plain settings, i.e., fluvial (meanderbelt and backswamp), colluvial, possibly eolian, estuarine, deltaic, and shallow-marine environments. These largely fine-grained sediments accumulated over a considerable part of the late Pleistocene (Sangamon to Wisconsin) (Autin et al., 1991; Otvos, 2005; McCulloh et al., 2003; Heinrich, 2006).

The surface of the Prairie Allogroup forms a coastal terrace along the northwest coast of the Gulf of Mexico from a point about 110 km (~70 mi) south of the Rio Grande within M

the best-

The surface of the Pride quadrangle comprises strata of the Pliocene Citronelle Formation, and Pleistocene stratigraphic units of the Intermediate and Prairie allogroups consisting of sediment deposited by the Amite River and by coastal processes. The Montpelier alloformation, Intermediate allogroup, and the Irene and Hammond alloformations of the Prairie Allogroup, form part of a coast-parallel belt of terraced Pleistocene strata. These Plio-Pleistocene strata are covered by late Pleistocene Peoria Loess up to slightly greater than 1 m thick. Holocene strata comprise undifferentiated alluvium of the Amite River and its tributaries.

The geologic map of Pride quadrangle provides basic geologic data of potential value to the conduct of aggregate-mining activities in the Amite River flood plain. The area hosts sizable sand and gravel resource potential in Holocene floodplain sediment, Pleistocene strata of the Prairie and Intermediate allogroups, and Pliocene sediment of the Citronelle Formation (Heinrich and McCulloh, 1999). The area has produced significant sand and gravel in the past decade (U.S. Geological Survey, 2011), and production activities have moved progressively northward in recent years. The 1:24,000-scale surface-geologic map of the study area also should serve efforts at protection of the Southern Hills aquifer system in the upper Amite River area.

### Acknowledgments

The work described and summarized herein was supported by the National Cooperative Geologic Mapping Program, STATEMAP component, under cooperative agreement G15AC00247 with the U.S. Geological Survey.

### References

- Autin, W. J., 1989, Geomorphic and stratigraphic evolution of the middle Amite River valley, southeastern Louisiana: Ph.D. dissertation, Louisiana State University, Baton Rouge, 177 p.
- Autin, W. J., 1988, Mapping alloformations in the Amite River, southeastern Louisiana: Geological Society of America Abstracts with Programs, v. 20, no. 4, p. 252.
- Autin, W. J., 1985, Alluvial morphology and stratigraphy of a meandering segment of the Amite River, southeastern Louisiana: Southeastern Geology, v. 26, no. 2, p. 95–110.
- Autin, W. J., 1984, Upland stratigraphy and geomorphology of southeastern Louisiana: Geological Society of America Abstracts with Programs, v. 16, no. 3, p. 123.
- Autin, W. J., and R. P. McCulloh (compilers), 1991, Geologic and derivative engineering geology hazard maps of East Baton Rouge Parish, Louisiana: Louisiana Geological Survey Open-File Series No. 91–01, prepared for East Baton Rouge Parish Department of Public Works under project no. 90-MS-CP-0024, 31 plates [1:24,000-scale] plus index and explanation.
- Autin, W. J., S. F. Burns, B. J. Miller, R. T. Saucier, and J. I. Snead, 1991, Quaternary geology of the Lower Mississippi Valley, *in* Morrison, R. B., ed., Quaternary non-glacial geology: conterminous United States: Boulder, Colorado, Geological Society of America, The Geology of North America, v. K–2, Chapter 18, p. 547–582.

- Berry, E. W., 1916, The flora of the Citronelle formation [Part 2], *in* Shorter contributions to general geology, 1916: U.S. Geological Survey Professional Paper, 98–L, p. 193–208.
- Bernard, H. A., and R. J. LeBlanc, 1965, Resume of the Quaternary geology of the northwestern Gulf of Mexico, *in* Wright, H. E., Jr., and D. G. Frey, eds., The Quaternary of the United States: Princeton University Press, p. 137–186.
- Bicker, A. R. Jr. (compiler), 1969, Geologic map of Mississippi: Mississippi Geological Survey, Jackson, scale 1:500,000.
- Campbell, C. L., 1972, Contributions to the geology of St. Helena and Tangipahoa parishes,

- Heinrich, P. V., 2006, Pleistocene and Holocene fluvial systems of the lower Pearl River, Mississippi and Louisiana, USA: Gulf Coast Association of Geological Societies Transactions, v. 56, p. 267–278.
- Heinrich, P. V., and R. P. McCulloh (compilers), 2007, Bogalusa 30 × 60 minute geologic quadrangle: Louisiana Geological Survey, Baton Rouge, scale 1:100,000.
- Heinrich, P. V., and W. J. Autin (compilers), 2000, Baton Rouge  $30 \times 60$  Minute Geologic Quadrangle: Louisiana Geological Survey, Baton Rouge, Scale 1:100,000.
- Heinrich, P. V., and R. P. McCulloh, 1999, Mineral resources map of Louisiana: scale 1:500,000, Louisiana Geological Survey, Baton Rouge.
- Hilgard, E. W., 1891, Orange sand, Lagrange, and Appomattox: American Geologist, v. 8, p. 129–131.
- Hilgard, E. W., 1860, Report on the geology and agriculture of the state of Mississippi: E. Barksdale, State Printer, Jackson, Mississippi, 391 p.
- Matson, G. C., 1916, The Pliocene Citronelle formation of the Gulf Coastal Plain [Part 1], *in* Shorter contributions to general geology, 1916: U.S. Geological Survey Professional Paper no. 98–L, p. 167–192.
- McCraw, D. J., and W. J. Autin, 1989, Lower Mississippi Valley Loess: Mississippi Valley Loess Tour Guidebook, INQUA Commission on Loess, North American Working Group, Baton Rouge, Louisiana, 35p.
- McCulloh, R. P., and P. V. Heinrich (compilers), 2008, Amite, LA 30 × 60 minute geologic quadrangle: Open-File Map 2008–03, Louisiana Geological Survey, Baton Rouge, scale 1:100,000.
- McCulloh, R. P., P. V. Heinrich, and J. Snead (compilers), 2009, Amite  $30 \times 60$  minute geologic quadrangle: Louisiana Geological Survey, Baton Rouge, scale 1:100,000.
- McCulloh, R. P., Heinrich, P. V., and Snead, J. I., 2003, Geology of the Ville Platte Quadrangle, Louisiana: Louisiana Geological Survey, Geological Pamphlet no. 14, 11 p. (to accompany the *Ville Platte 30 × 60 Minute Geologic Quadrangle*).
- McCulloh, R. P., P. Heinrich, and J. Snead (compilers), 1997, Amite, Louisiana–Mississippi  $30 \times 60$  minute geologic quadrangle: prepared in cooperation with U.S. Geological Survey, STATEMAP program, under cooperative agreement no. 1434-HQ-96-AG-01490, Louisiana Geological Survey, Baton Rouge, unpublished 1:100,000-scale map plus explanation and notes.
- McGee, W. J., 1891, The Lafayette formation, *in* Powell, J. W., Twelfth annual report of the United States Geological Survey to the Secretary of the Interior, 1890–1891: Part I, U.S. Geological Survey Annual Report, v. 12, pt. 1, p. 347–521.
- Miller, B. J. (compiler), [1983], [Distribution and thickness of loess in Jackson, Louisiana–Mississippi, Lake Charles, Louisiana–Texas, and Baton Rouge, Louisiana  $1 \times 2$  degree

quadrangles]: Louisiana State University Department of Agronomy, Louisiana

Smith, M. L., and M. Meylan, 1983, Red Bluff, Marion County, Mississippi: A Citronelle