- 1. Minerals Processing Research Institute, Louisiana State University, Baton Rouge, LA 70803 USA
- 2. Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- 3. Department of Chemical Engineering, Lamar University, Beaumont, TX 77710
- 4. Mosaic Corporation, Uncle Sam, LA 70792 USA

The First International Symposium on Sustainable Chemical Product and Process Engineering (SCPPE2007) Guangzhou, China, September 25-28, 2007

Base Case of Existing Plants

Plants in the lower Mississippi River Corridor, Base Case. Flow Rates in Million Tons Per Year

Carbon Dioxide as a Raw Material

Methodology of Developing New Carbon Dioxide Processes

- Identify potentially new processes
- Simulate with HYSYS
- Estimate utilities required
- Evaluate value added economic analysis
- Select best processes based on value added economics
- Integrate new processes with existing ones to form a superstructure for optimization

New Processes Included in the Complex

Application of the Chemical Complex Analysis System to Chemical Complex in the Lower Mississippi Riv Ri0.000i1irreipu0

Processes in the Superstructure

Triple Bottom Line

Some of the Raw Material Costs, Product Prices and Sustainability Cost and Credits

Triple Bottom Line Results for the Base Case and Optimal Structure

Life Cycle Assessment using TRACI

Carbon Nanotubes

Seamless cylindrical tubes, consisting of carbon atoms arranged in a regular hexagonal structure

Consist of carbon filaments with nanoscale (10-9 m) diameter and micron scale (10-6 m) length.

Considered as the ultimate engineering material because of their unique and distinct electronic, mechanical and material characteristics.

Challenge - production of purified carbon nanotubes in commercial quantities at affordable prices.

Market price is \$100-\$400/gm for purified nanotubes

Summary of Conceptual Designs of CNT Processes

Flow Diagram of CNT-FBR Process

Summary of the Profitability Analysis for the Conceptual Designs of CNT Processes

Sustainable Chemical Plants using Biomass Feedstocks

Biomass Feedstock

Biomass Conversion Routes

Chemicals from Fermentation

Ethanol Product Chain

Anaerobic Digestion of Mixed Biomass

- Complex organic molecules are broken down into simple sugars, amino acids, and fatty acids with the addition of hydroxyl groups.

- Volatile fatty acids (e.g., acetic, propionic, butyric, valeric) are formed along with ammonia, carbon dioxide and hydrogen sulfide.

- Simple molecules from acidogenesis are further digested to produce carbon dioxide, hydrogen and organic acids (mainly acetic acid).

- The organic acids are converted to methane, carbon dioxide and water.

Anaerobic Digestion of Animal Waste

Chemicals from Vegetable oils

Chemicals from Transesterification

Utilization of Glycerol

Chemical Conversion of Biomass to Chemicals – Levulinic Acid

Chemicals from Gasification

Chemicals from Pyrolysis

Chemicals from Thermal Liquefaction

New Processes in the Chemical Complex