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to be random variables from the same distribution (univari-
ate) with zero mean and unit deviation. Then similar to (6), 
but with a general matrix A for the linear case, additional 
constraints, and  i = 1, data reconciliation problem can be 
stated as: 

n 
(yi,1 − xi,1)2 

min such that 
σ2 

i=1 i,1 

Ax = 0, (7) 

A is the process matrix 

Lb ≤ x ≤ Ub 

Formulation (7) can be further generalized to include the 
unmeasured variables (u) and nonlinear process model con-
straints ( f, g), which is frequently used in the data reconcil-
iation literature. 

min(y − x)Q−1(y − x) such that 

g(x, u) ≥ 0 

f(x, u) = 0 
(8)

Lbx ≤ x ≤ Ub
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where pi is the probability and b2σ2 the variance of the i i 
contamination by a gross error. 

For Logistic distribution, function (10) becomes 

1 exp((yi − xi)/σi) max Pi =max or 
σi (1 + exp((yi − xi)/σi))2 

i i 

(yi − xi)min 2 ln  1 + exp 
σi

i 

(yi − xi)− + ln σi (13)
σ
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Table 1 
Tuning constants for different ρ functions with efficiency values 95.5% 

ρ function Tuning constants 

Contaminated Normal 
Cauchy 
Logistic 
“Lorentzian” 
Fair 
Hampel 

bCN = 10, pCN = 0.235 
cC = 2.3849 
cLo = 0.602 
cL = 2.6 
cF = 1.3998 
aH = 1.35, bH = 2.7, cH = 5.4 

To compare the data reconciliation and gross error de-
tection performance of these ρ functions, they were first 
standardized by properly tuning their parameters. Some 
functions have their tuning constants given as a function 
of asymptotic efficiency such as the Fair and Cauchy func-
tions. However, these asymptotic variances “give only crude 
indications for the actual variances” for finite sample size 
(Hampel, 2002). Therefore, approximate finite sample vari-
ances and consecutively relative efficiencies were calculated 
by simulation and Monte Carlo studies (Hampel, 1985; 
Andrews et al., 1972). We performed a similar study for the 
above ρ functions with a sample size of 28 and 2000 sim-
ulation runs that resulted in the following tuning constant 
values (efficiency values are approximately 95.5%) given 
in Table 1. 

Fig. 1 depicts individual standardized ρ functions in the 
objective function, showing that Fair and Logistic functions 
cases result in a convex objective function. The convexity 
of the objective function guarantees the global optimality 
of the nonlinear data reconciliation problem for a process, 
which can be described by only linear constraints. 

Methods to measure the robustness of an estimator involve 
the use of the influence function, IF (Hampel, Ronchetti, 
Rousseeuw, & Stahel, 1986), which is defined for a sample 
x, an estimator T over an assumed distribution function F 
and a perturbed distribution function Ft as follows: 

T(Ft) − T(F) ∂ 
IF(x, T, F) = lim = [T(Ft)]|t=0 (23) 

t→0 t ∂t 

The heuristic interpretation of this influence function is that 
“it describes the effect of an infinitesimal contamination at 
the point x on the estimate” (Hampel et al., 1986). Since 
the influence function is proportional to the derivative of the 
maximum likelihood function, the weight given to any gross 
error in the measurements while calculating the estimates 
can be seen in Fig. 2 (see Appendix A for details). 

The influence function for WLS is proportional to the 
measurement error (derivative of Eq. (12)) justifying the low 
breakdown point and unbounded effect of large errors. The 
effect of larger errors is reduced for the ρ function of the 
Cauchy distribution, “Lorentzian” function and Hampel’s 
redescending M-estimator, shown by gradually decreasing 
influence functions in the region of greater than 3.0 of the 
standard error. Therefore, these three ρ functions are called 
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Fig. 3. Influence function for the ρ function of contaminated Normal distribution and five different cut points for gross error detection (first marker: 
maximum of the influence function (2.131), (�): inflection point of the first derivative of the influence function (2.42), (�) Farris–Law criteria (2.65), 
(�) inflection point of the influence function (2.92); second marker: another inflection point of the first derivative of the influence function (3.34)). 
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CONOPT2 and MINOS5. In the first five examples, the 
piece-wise linear Hampel’s redescending M-estimator is 
modeled as an external function coded in the programming 
language C and called by GAMS (Kalvelagen, 2002). For 
the last two problems, these discontinuities are smoothed 
as described in Arora and Biegler (2001). All calculations 
for the performance measures and the gross error detection 
rule X84 are implemented with Perl. 

5.1. Examples from literature 

The methods presented above are tested first on examples 
used in various literature articles in the last three decades. 
Two of these examples (Examples 1 and 2) contain linear 
and the remaining three (Examples 3-5) nonlinear process 
models. Except in Example 5, the lower bounds on the vari-
ables are set to 50% of the true values and the upper bounds 
to twice the true values. In Example 5, the lower bounds for 
all variables are 50% of the true values whereas the upper 
bounds are set to 150% of the true values. 

Example 1 (Ripps, 1965). This example involves a simple 
chemical reactor with two entering and two leaving mass 
flows. All four variables are measured in the system, and they 
are related by three linear mass balance equations (Ripps, 
1965; Romagnoli & Sanchez, 2000). For the Monte Carlo 
study, random measurements are created from Normal and 
Cauchy distributions as outlined above. Outliers were cre-
ated in 10% of the measurements randomly by adding or 
subtracting 10–100% of the true values. With the exceptions 
of the Hampel’s redescending M-estimator and MIMT, all 
runs were executed independently and with the same initial 
conditions. For MIMT, all consecutive runs were initiated 
with the resulting values of the previous run. Hampel’s re-
descending M-estimator converged to an inferior optimal if 
it was not initialized with the results from Cauchy distribu-
tion ρ function or Fair function method. 

The results of Monte Carlo study runs for each method 
are shown in Table 4. The ρ function of the Cauchy distribu-

Table 4 
Performance of different methods for Example 1 

tion shows the best performance with second highest over-
all power and lowest average number of Type I errors if the 
first cut point at 2.385 is used. Rule X84 seems to be con-
servative for this example, and the factor 5.2 can be reduced 
to improve the results. The comparison of the data recon-
ciliation performance shows that ρ 
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Table 5 
Performance of different methods for Example 2 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 1000 929 1100 1052 1000 1153 1000 1085 
Total GE 6955 6456 7579 7415 6914 8053 6908 6824 
Runs with GE 1000 929 1100 1052 999 1153 999 1084 
OP (GED #1) 0.684 0.705 0.759 0.724 0.720 0.744 0.744 0.712 
AVTI (GED #1) 1.364 2.118 7.645 3.371 2.255 4.692 4.193 3.253 
OP (GED #2) – 0.684 0.751 0.705 0.678 0.718 0.704 0.678 
AVTI (GED #2) – 1.826 7.296 3.203 1.500 4.144 2.622 2.038 
OP (GED #3) – 0.700 0.338 0.689 0.702 0.707 0.650 0.670 
AVTI (GED #3) – 2.713 0.882 3.281 2.421 4.846 2.499 2.699 
Mean TER 0.558 0.505 0.412 0.455 0.525 0.384 0.494 0.460 
Median TER 0.552 0.504 0.385 0.466 0.516 0.400 0.472 0.447 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for first and second cut points and rule X84, respectively). 

Similar to Example 2, modified MIMT outperformed 
other methods in data reconciliation. Once again, the ρ 
function of Cauchy distribution shows that comparable, if 
not superior results can be achieved in a single NLP solution 
(see Table 6). 

Example 4 (Pai and Fisher, 1988). In this example, there are 
six nonlinear equality constraints, five measured variables— 
all measurements are redundant—, and three observable un-
measured variables. On the average, 25% of the generated 
measurements are contaminated with gross errors ranging 
from 10 to 100% of the exact values reported in Pai and 
Fisher (1988). 

As seen in Table 7, the ρ function of Cauchy distribu-
tion results in the highest total error reduction whereas the ρ 
function for contaminated Normal reaches the highest over-
all power but with more occurrences of Type I errors. 

Example 5 (Swartz, 1989). Another widely used literature 
example is the nonlinear heat exchanger network problem 
described by Swartz (1989), and Romagnoli and Sanchez 
(2000). The system of four heat exchangers is modeled 
with 17 material and energy balances. The total number of 

Table 6 
Performance of different methods for Example 3 

variables in the system is 30, of which 16 are measured 
and the rest is unmeasured. There are 10 redundant and 6 
non-redundant measured variables. 

Gross errors are generated only for the redundant mea-
sured variables and on the average of 25% of the time. The 
magnitude of the errors range between 5 and 10 standard 
deviations for the flow rates and between 5 and 30 standard 
deviations for the temperature variables. 

Most of the methods studied show poor data reconcilia-
tion results with close to none average total error reductions 
(Table 8). The ρ function for contaminated Normal and the 
“Lorentzian” function prove to be the best options for this 
case. 

5.2. Industrial examples 

Not many industrial examples have been investigated for 
the performance of different data reconciliation and gross 
error detection methods. The few cases in the open liter-
ature study industrial process subsystems such as reactors 
(Sanchez et al., 1996; Weiss et al., 1996), or utilize simu-
lated plant measurements (Jordache et al., 2001) instead of 
real time plant data. The first industrial example involving 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 1000 1077 1076 1028 1006 1110 1000 1026 
Total GE 5986 6398 6389 6172 5990 6569 5935 5546 
Runs with GE 1000 1076 1075 1027 1005 1109 999 1025 
OP (GED #1) 0.744 0.776 0.843 0.758 0.774 0.757 0.822 0.799 
AVTI (GED #1) 1.744 2.234 8.571 4.488 2.583 3.722 4.986 3.675 
OP (GED #2) – 0.760 0.836 0.742 0.733 0.722 0.779 0.764 
AVTI (GED #2) – 1.964 8.172 4.330 1.809 3.149 3.102 2.362 
OP (GED #3) – 0.736 0.209 0.607 0.703 0.642 0.585 0.667 
AVTI (GED #3) – 1.945 0.391 2.771 1.757 2.478 1.143 1.492 
Mean TER 0.622 0.585 0.423 0.450 0.587 0.475 0.552 0.539 
Median TER 0.625 0.579 0.400 0.477 0.583 0.511 0.538 0.526 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for first and second cut points and rule X84, respectively). 
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Table 7 
Performance of different methods for Example 4 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 1000 1058 1000 1032 1000 1000 1000 1018 
Total GE 1265 1350 1265 1320 1265 1265 1265 1279 
Runs with GE 771 824 771 804 771 771 771 785 
OP (GED #1) 0.580 0.601 0.597 0.666 0.614 0.639 0.627 0.611 
AVTI (GED #1) 0.225 0.341 0.322 0.411 0.280 0.342 0.351 0.330 
OP (GED #2) – 0.504 0.578 0.588 0.469 0.526 0.515 0.494 
AVTI (GED #2) – 0.278 0.271 0.315 0.136 0.186 0.159 0.161 
OP (GED #3) – 0.442 0.180 0.468 0.386 0.420 0.333 0.335 
AVTI (GED #3) – 0.298 0.160 0.280 0.235 0.250 0.232 0.247 
Mean TER 0.538 0.321 0.493 0.369 0.542 0.478 0.526 0.511 
Median TER 0.568 0.514 0.538 0.572 0.593 0.586 0.569 0.558 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for first and second cut points and rule X84, respectively). 

real plant data and process model was given in Chen et al. 
(1998). 

In this subsection, the sulfuric acid process from (Chen 
et al., 1998) and 1998
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Table 9 
Performance of different methods for Example 6 

MIMT H WLS CN Cauchy L Fair Logistic 

Number of runs 500 500 504 524 514 510 500 509 
Total GE 3120 3392 3305 3346 3215 3181 3181 3026 
Runs with GE 500 500 504 524 514 510 500 509 
OP (GED #1) 0.841 0.863 0.884 0.912 0.889 0.904 0.907 0.896 
AVTI (GED #1) 3.064 4.556 6.706 5.179 4.907 5.484 7.802 6.796 
OP (GED #2) – 0.833 0.879 0.897 0.848 0.876 0.866 0.844 
AVTI (GED #2) – 3.168 6.163 3.532 2.580 3.122 4.057 3.220 
OP (GED #3) – 0.819 0.670 0.871 0.827 0.852 0.778 0.784 
AVTI (GED #3) – 2.892 1.730 2.882 2.397 2.698 2.406 2.083 
Mean TER 0.721 0.662 0.636 0.708 0.759 0.679 0.665 0.653 
Median TER 0.767 0.714 0.661 0.778 0.802 0.779 0.682 0.689 

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number 
(i = 1, 2, 3 for fi
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The alkylate product is a mixture of gasoline boiling range 
branched hydrocarbons which is blended with the refinery 
gasoline pool to increase the gasoline octane. 

A simplified process flow diagram for a generic sulfu-
ric acid alkylation process is given in Fig. 7. Specifically, 
Motiva alkylation process consists of five distinct sections, 
namely reaction, refrigeration, depropanizer, deisobutanizer 
and saturate deisobutanizer sections. The process has four 
reactor pairs and four acid settlers. In the reaction section, 
there are three feed streams: the olefin feed, the isobutane 
feed and the recycled olefin/isobutane mixture. The olefin 
feed contains the light olefins that are reacted with isobu-
tane in the alkylation unit’s STRATCO stirred reactors. The 
isobutane stream is in excess to fully react with all of the 
olefins being charged to the unit. 

The alkylation process model developed using process 
flow diagrams, process data and process systems exper-
tise has 1579 mostly nonlinear equality and 50 inequality 
constraints. The process model has 112–122 measured vari-
ables (122 for the first and second steady states, and 112 for 
the third steady state investigated in this study), 1512–1522 
unmeasured variables and 67 parameters. The process mea-
surements obtained from the distributed control system in-
clude 31 temperature, 30 flowrate, four pressure and 47–57 
composition measurements. These measured variables, their 
standard deviations and the details of the model are given in 
Özyurt, Pike, Hopper, Punuru, and Yaws (2001), and Rich 
et al. (2001). 

For the alkylation plant, three different steady-state op-
eration points were determined from the data obtained on 

Fig. 9. Standard errors in measurements after reconciliation of the alkylation plant data at the second steady state: (a) all errors; (b) errors between –5 
and 5. (�) MIMT; (•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; ( ) Fair; ( ) Logistic. 
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8–9 November and 6–7 December 1998. The gross errors 
detected by the methods requiring single NLP solution vary 
between 19 and 44 for the first, between 25 and 43 for the 
second and between 23 and 41 for the third steady state 
(Table 11). MIMT-GED #1 and GED #2 for all other meth-
ods suggest that the second steady state has the most gross 
errors followed by the third steady-state operation point. 
Considering MIMT-GED #1, H-GED #2 and Cauchy-GED 
#2, the range for detected gross errors is 23–24, 28–30 and 
26–27 for the first, second and third steady states, respec-
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error detection criteria based on estimation ef
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