

Module 2 Fundamentals of Basic Radiation

Topics Covered in This Module Radiation Found in thenvironment, Types of Radiation, Exposure, Absorbed Dose, and Deservalent.

Natural Sources of Radiation Cosmic, Terrestrial,

Internal,

Inhaled.

Terrestrial Radiation

crust.

In the United States, highest radiation levels found on the eastern slope of the Rockies in Colorado Plateau Area Range 75 to 140 mrem/year and average 90 mrem/year.

In the United States, lowest radiation levels found on the Atlantic Coast in the Atlantic and Gulf Coastal Plain Range 15 to 35 mrem/year and average 23 mrem/ear.

Inhaled Radiation

Primarily from Rador²⁽²Rn) and itsdaughters.

²²²Rn is released from the soil as Radi226 (²⁶Ra) and then it decays to Radon.

Radium is part of the Uraniu 238 (³⁸U) decaychain.

Levels vary widely from area area,

Average dose is 200 mregre ar.

Dose may be enhanced by poor ventilation or the use of uranium containing building materials.

Types of Radiation

What is Radiation?

Radiation is the emission of energy as electromagnetic waves or as moving subatomic particles through space or through aterial.

- Radiation is often categorized as either ionizing or-imprizing depending on the energy of radiated particles marves.
- Ionizing radiation carries more than 10 eV, which is enough to ionize atoms and molecules and break chem**ioah**ds.

Particulate Radiation Vs. Electromagnetic Radiation

- ParticulateRadiation:
 - AlphaParticle,
 - BetaParticle,
 - Neutron.
- ElectromagneticRadiation:
 - Photon,
 - Gamma.

Electromagnetic Radiation

Oscillating electric and magnetic fields that transfer energy to matter via photon or waventeractions.

Electromagnetic radiation includes radio waves, microwaves, infrared, visible light, ultraviolet, Xays, and gammæys.

Charged Radiation Vs. Uncharged Radiation

ChargecRadiation: AlphaParticle, BetaParticle.

UnchargedRadiation: Photon, Neutron.

Ionizing Radiation Vs. Non-Ionizing Radiation IonizingRadiation:

Exposure

- The sum of the charges of one sign produced by phoitoasgiven mass ofair.
- The SI unit of exposure is the Coulomb/kilogram ()C/kg
- The traditional unit is the roentgen <u>(R</u>
- 1 R = 2.58 X 140C/kg.

This unit is only defined for photons of less than 3 MeV energy.in

Absorbed Dose

- The energy deposited in or absorbed by an object permans. Applies to all radiation at all energies in addisorbers.
- The SI unit of absorbed dose is the Gray).(
- The traditional unit is thead.

100 rad = **1**Gy

Dose Equivalent

The energy deposited in an object per unit mass (D) multiplied by a

effectiveness of different types of radiation

The SI unit of dose equivalent is the Siever.(

The traditional unit is theem.

100 rem = 15 v

Symbol is H, H = DQx

Recommended Quality Factors

Radiation Type	QF
X-Ray, Gammas, and betas	1
Neutrons	2-11
Neutrons with unknown energy	10
High Energy photon	10
Alpha particles, fission fragments, heavy nuclei	20

Conversion

For the purpose of adiation protection, it is assumed that 1 R = 1 rad = 1 rem.

R is only defined for hotons,

The quality factor is 1 forhotons,

absorber,

1 R isactually lesshan 1 rad (1 R = 0.97 rad for tissue